These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 22664277)
1. A method for making directed changes to the Fusarium graminearum genome without leaving markers or other extraneous DNA. Watson RJ; Wang S Fungal Genet Biol; 2012 Jul; 49(7):556-66. PubMed ID: 22664277 [TBL] [Abstract][Full Text] [Related]
2. A model for integration of DNA into the genome during transformation of Fusarium graminearum. Watson RJ; Burchat S; Bosley J Fungal Genet Biol; 2008 Oct; 45(10):1348-63. PubMed ID: 18722542 [TBL] [Abstract][Full Text] [Related]
3. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. Maier FJ; Malz S; Lösch AP; Lacour T; Schäfer W FEMS Yeast Res; 2005 Apr; 5(6-7):653-62. PubMed ID: 15780665 [TBL] [Abstract][Full Text] [Related]
4. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Güldener U; Seong KY; Boddu J; Cho S; Trail F; Xu JR; Adam G; Mewes HW; Muehlbauer GJ; Kistler HC Fungal Genet Biol; 2006 May; 43(5):316-25. PubMed ID: 16531083 [TBL] [Abstract][Full Text] [Related]
5. Characterization of AfpA, an alkaline foam protein from cultures of Fusarium culmorum and its identification in infected malt. Zapf MW; Theisen S; Rohde S; Rabenstein F; Vogel RF; Niessen L J Appl Microbiol; 2007 Jul; 103(1):36-52. PubMed ID: 17584451 [TBL] [Abstract][Full Text] [Related]
6. Screening of putative oxygenase genes in the Fusarium graminearum genome sequence database for their role in trichothecene biosynthesis. Tokai T; Koshino H; Kawasaki T; Igawa T; Suzuki Y; Sato M; Fujimura M; Eizuka T; Watanabe H; Kitahara T; Ohta K; Shibata T; Kudo T; Inoue H; Yamaguchi I; Kimura M FEMS Microbiol Lett; 2005 Oct; 251(2):193-201. PubMed ID: 16125338 [TBL] [Abstract][Full Text] [Related]
7. The use of tri5 gene sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. Niessen L; Schmidt H; Vogel RF Int J Food Microbiol; 2004 Sep; 95(3):305-19. PubMed ID: 15337595 [TBL] [Abstract][Full Text] [Related]
8. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of gushing-active hydrophobins from Fusarium graminearum and related species. Sarlin T; Kivioja T; Kalkkinen N; Linder MB; Nakari-Setälä T J Basic Microbiol; 2012 Apr; 52(2):184-94. PubMed ID: 21780148 [TBL] [Abstract][Full Text] [Related]
10. Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Malz S; Grell MN; Thrane C; Maier FJ; Rosager P; Felk A; Albertsen KS; Salomon S; Bohn L; Schäfer W; Giese H Fungal Genet Biol; 2005 May; 42(5):420-33. PubMed ID: 15809006 [TBL] [Abstract][Full Text] [Related]
11. Real-time PCR assay to quantify Fusarium graminearum wild-type and recombinant mutant DNA in plant material. Dyer RB; Kendra DF; Brown DW J Microbiol Methods; 2006 Dec; 67(3):534-42. PubMed ID: 16859788 [TBL] [Abstract][Full Text] [Related]
12. Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum. Chalvet F; Grimaldi C; Kaper F; Langin T; Daboussi MJ Mol Biol Evol; 2003 Aug; 20(8):1362-75. PubMed ID: 12777515 [TBL] [Abstract][Full Text] [Related]
13. Repetitive genomic sequences as a substrate for homologous integration in the Rhizopus oryzae genome. Yuzbashev TV; Larina AS; Vybornaya TV; Yuzbasheva EY; Gvilava IT; Sineoky SP Fungal Biol; 2015 Jun; 119(6):494-502. PubMed ID: 25986546 [TBL] [Abstract][Full Text] [Related]
14. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Ilgen P; Hadeler B; Maier FJ; Schäfer W Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066 [TBL] [Abstract][Full Text] [Related]
15. Development of a specific TaqMan real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Demeke T; Gräfenhan T; Clear RM; Phan A; Ratnayaka I; Chapados J; Patrick SK; Gaba D; Lévesque CA; Seifert KA Int J Food Microbiol; 2010 Jun; 141(1-2):45-50. PubMed ID: 20483187 [TBL] [Abstract][Full Text] [Related]
16. Folyt1, a new member of the hAT family, is active in the genome of the plant pathogen Fusarium oxysporum. Gómez-Gómez E; Anaya N; Roncero MI; Hera C Fungal Genet Biol; 1999 Jun; 27(1):67-76. PubMed ID: 10413616 [TBL] [Abstract][Full Text] [Related]
17. Identification of new galactose oxidase genes in Fusarium spp. Aparecido Cordeiro F; Bertechini Faria C; Parra Barbosa-Tessmann I J Basic Microbiol; 2010 Dec; 50(6):527-37. PubMed ID: 21077113 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of Fusarium mitochondrial genomes reveals a highly variable region that encodes an exceptionally large open reading frame. Al-Reedy RM; Malireddy R; Dillman CB; Kennell JC Fungal Genet Biol; 2012 Jan; 49(1):2-14. PubMed ID: 22178648 [TBL] [Abstract][Full Text] [Related]
19. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017 [TBL] [Abstract][Full Text] [Related]
20. Homologous recombination and allele replacement in transformants of Fusarium fujikuroi. Fernández-Martín R; Cerdá-Olmedo E; Avalos J Mol Gen Genet; 2000 Jun; 263(5):838-45. PubMed ID: 10905351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]