BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22664539)

  • 1. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection.
    Vargas-García Mdel C; López MJ; Suárez-Estrella F; Moreno J
    Sci Total Environ; 2012 Aug; 431():62-7. PubMed ID: 22664539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R; Cao L; Zhang R
    J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Wang Y; Shi Y
    J Hazard Mater; 2013 Mar; 248-249():107-14. PubMed ID: 23352906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation of toxic heavy metals using acidothermophilic autotrophes.
    Umrania VV
    Bioresour Technol; 2006 Jul; 97(10):1237-42. PubMed ID: 16324838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial and plant derived biomass for removal of heavy metals from wastewater.
    Ahluwalia SS; Goyal D
    Bioresour Technol; 2007 Sep; 98(12):2243-57. PubMed ID: 16427277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Tong H; Yuan P
    J Hazard Mater; 2012 Sep; 233-234():25-32. PubMed ID: 22795840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.
    Kamika I; Momba MN
    BMC Microbiol; 2013 Feb; 13():28. PubMed ID: 23387904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution.
    Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O
    Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of multi-heavy metal tolerance traits of soil-borne fungi for simultaneous removal of hazardous metals.
    Amin I; Nazir R; Rather MA
    World J Microbiol Biotechnol; 2024 Apr; 40(6):175. PubMed ID: 38647735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.
    Zhang X; Lin L; Chen M; Zhu Z; Yang W; Chen B; Yang X; An Q
    J Hazard Mater; 2012 Aug; 229-230():361-70. PubMed ID: 22749969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution.
    Ahmad I; Ansari MI; Aqil F
    Indian J Exp Biol; 2006 Jan; 44(1):73-6. PubMed ID: 16430095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intimate communication between Comamonas aquatica and Fusarium solani in remediation of heavy metal-polluted environments.
    Qurbani K; Hamzah H
    Arch Microbiol; 2020 Aug; 202(6):1397-1406. PubMed ID: 32179938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1.
    Yilmaz EI
    Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of anaerobic biomass in adsorbing heavy metals.
    Haytoglu B; Demirer GN; Yetis U
    Water Sci Technol; 2001; 44(10):245-52. PubMed ID: 11794661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Yeasts--biosorbents of heavy metals].
    Podgorskiĭ VS; Kasatkina TP; Lozovaia OG
    Mikrobiol Z; 2004; 66(1):91-103. PubMed ID: 15104060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides.
    Rakhshaee R; Khosravi M; Ganji MT
    J Hazard Mater; 2006 Jun; 134(1-3):120-9. PubMed ID: 16325335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.