These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 22664739)
21. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. Tan XH; Zheng XM; Yu LX; He J; Zhu HM; Ge XP; Ren XL; Ye FQ; Bellusci S; Xiao J; Li XK; Zhang JS J Cell Mol Med; 2017 Nov; 21(11):2909-2925. PubMed ID: 28544332 [TBL] [Abstract][Full Text] [Related]
22. Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease. Faivre A; Katsyuba E; Verissimo T; Lindenmeyer M; Rajaram RD; Naesens M; Heckenmeyer C; Mottis A; Feraille E; Cippà P; Cohen C; Longchamp A; Allagnat F; Rutkowski JM; Legouis D; Auwerx J; de Seigneux S Nephrol Dial Transplant; 2021 Jan; 36(1):60-68. PubMed ID: 33099633 [TBL] [Abstract][Full Text] [Related]
23. Klotho reduces apoptosis in experimental ischaemic acute kidney injury via HSP-70. Sugiura H; Yoshida T; Mitobe M; Yoshida S; Shiohira S; Nitta K; Tsuchiya K Nephrol Dial Transplant; 2010 Jan; 25(1):60-8. PubMed ID: 19745103 [TBL] [Abstract][Full Text] [Related]
24. Structure-function relationships of the soluble form of the antiaging protein Klotho have therapeutic implications for managing kidney disease. Zhong X; Jagarlapudi S; Weng Y; Ly M; Rouse JC; McClure K; Ishino T; Zhang Y; Sousa E; Cohen J; Tzvetkova B; Cote K; Scarcelli JJ; Johnson K; Palandra J; Apgar JR; Yaddanapudi S; Gonzalez-Villalobos RA; Opsahl AC; Lam K; Yao Q; Duan W; Sievers A; Zhou J; Ferguson D; D'Antona A; Zollner R; Zhu HL; Kriz R; Lin L; Clerin V J Biol Chem; 2020 Mar; 295(10):3115-3133. PubMed ID: 32005658 [TBL] [Abstract][Full Text] [Related]
25. Klotho restoration via ACE2 activation: A potential therapeutic strategy against acute kidney injury-diabetes comorbidity. Kale A; Shelke V; Sankrityayan H; Dagar N; Gaikwad AB Biochim Biophys Acta Mol Basis Dis; 2022 Dec; 1868(12):166532. PubMed ID: 36041714 [TBL] [Abstract][Full Text] [Related]
26. Implications of Klotho Protein for Managing Kidney Disease - an Emerging Role in Therapeutics and Molecular Medicine. Ray SK; Masarkar N; Mukherjee S Curr Mol Med; 2021; 21(6):484-494. PubMed ID: 33222666 [TBL] [Abstract][Full Text] [Related]
27. The role of podocyte damage in the etiology of ischemia-reperfusion acute kidney injury and post-injury fibrosis. Chen Y; Lin L; Tao X; Song Y; Cui J; Wan J BMC Nephrol; 2019 Mar; 20(1):106. PubMed ID: 30922260 [TBL] [Abstract][Full Text] [Related]
28. α-Klotho's effects on mineral homeostasis are fibroblast growth factor-23 dependent. Erben RG Curr Opin Nephrol Hypertens; 2018 Jul; 27(4):229-235. PubMed ID: 29851418 [TBL] [Abstract][Full Text] [Related]
29. Effects of Klotho on fibrosis and cancer: A renal focus on mechanisms and therapeutic strategies. Mencke R; Olauson H; Hillebrands JL Adv Drug Deliv Rev; 2017 Nov; 121():85-100. PubMed ID: 28709936 [TBL] [Abstract][Full Text] [Related]
30. Cellular communication network factor 2 (CCN2) promotes the progression of acute kidney injury to chronic kidney disease. Inoue T; Kusano T; Amano H; Nakamoto H; Okada H Biochem Biophys Res Commun; 2019 Sep; 517(1):96-102. PubMed ID: 31320136 [TBL] [Abstract][Full Text] [Related]
31. Urinary Klotho measured by ELISA as an early biomarker of acute kidney injury in patients after cardiac surgery or coronary angiography. Torregrosa I; Montoliu C; Urios A; Giménez-Garzó C; Tomás P; Solís MÁ; Ramos C; Juan I; Puchades MJ; Saez G; Blasco ML; Miguel A Nefrologia; 2015; 35(2):172-8. PubMed ID: 26300511 [TBL] [Abstract][Full Text] [Related]
33. Induced Pluripotent Stem Cell-Derived Conditioned Medium Attenuates Acute Kidney Injury by Downregulating the Oxidative Stress-Related Pathway in Ischemia-Reperfusion Rats. Tarng DC; Tseng WC; Lee PY; Chiou SH; Hsieh SL Cell Transplant; 2016; 25(3):517-30. PubMed ID: 26132529 [TBL] [Abstract][Full Text] [Related]
34. Renal Klotho expression in patients with acute kidney injury is associated with the severity of the injury. Seo MY; Yang J; Lee JY; Kim K; Kim SC; Chang H; Won NH; Kim MG; Jo SK; Cho W; Kim HK Korean J Intern Med; 2015 Jul; 30(4):489-95. PubMed ID: 26161015 [TBL] [Abstract][Full Text] [Related]
35. Pyruvate kinase M2 mediates fibroblast proliferation to promote tubular epithelial cell survival in acute kidney injury. Ye Y; Xu L; Ding H; Wang X; Luo J; Zhang Y; Zen K; Fang Y; Dai C; Wang Y; Zhou Y; Jiang L; Yang J FASEB J; 2021 Jul; 35(7):e21706. PubMed ID: 34160104 [TBL] [Abstract][Full Text] [Related]
36. Effects of Post Ischemia-Reperfusion Treatment with Trimetazidine on Renal Injury in Rats: Insights on Delayed Renal Fibrosis Progression. Park JH; Jun JH; Shim JK; Shin EJ; Shin E; Kwak YL Oxid Med Cell Longev; 2018; 2018():1072805. PubMed ID: 30057668 [TBL] [Abstract][Full Text] [Related]
37. Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury. Moonen L; Geryl H; D'Haese PC; Vervaet BA BMC Nephrol; 2018 Dec; 19(1):343. PubMed ID: 30509215 [TBL] [Abstract][Full Text] [Related]
38. The role of klotho in chronic kidney disease. Zou D; Wu W; He Y; Ma S; Gao J BMC Nephrol; 2018 Oct; 19(1):285. PubMed ID: 30348110 [TBL] [Abstract][Full Text] [Related]
39. Apoptosis repressor with caspase recruitment domain deficiency accelerates ischemia/reperfusion (I/R)-induced acute kidney injury by suppressing inflammation and apoptosis: The role of AKT/mTOR signaling. Yingjie K; Haihong Y; Lingwei C; Sen Z; Yuanting D; Shasha C; Liutong P; Ying W; Min Z Biomed Pharmacother; 2019 Apr; 112():108681. PubMed ID: 30970510 [TBL] [Abstract][Full Text] [Related]
40. The protective effect of klotho against contrast-associated acute kidney injury via the antioxidative effect. Oh HJ; Oh H; Nam BY; You JS; Ryu DR; Kang SW; Chung YE Am J Physiol Renal Physiol; 2019 Oct; 317(4):F881-F889. PubMed ID: 31411071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]