BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 2266487)

  • 1. Role of host and bacterial factors in modulating staphylococcal adhesion to implanted polymer surfaces.
    Vaudaux P; Yasuda H; Velazco MI; Huggler E; Ratti I; Waldvogel FA; Lew DP; Proctor RA
    J Biomater Appl; 1990 Oct; 5(2):134-53. PubMed ID: 2266487
    [No Abstract]   [Full Text] [Related]  

  • 2. New aspects in the pathogenesis and prevention of polymer-associated foreign-body infections caused by coagulase-negative staphylococci.
    Jansen B; Schumacher-Perdreau F; Peters G; Pulverer G
    J Invest Surg; 1989; 2(4):361-80. PubMed ID: 2488001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exclusion of uropathogen adhesion to polymer surfaces by Lactobacillus acidophilus.
    Hawthorn LA; Reid G
    J Biomed Mater Res; 1990 Jan; 24(1):39-46. PubMed ID: 2105962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel animal model for studying the molecular mechanisms of bacterial adhesion to bone-implanted metallic devices: role of fibronectin in Staphylococcus aureus adhesion.
    Fischer B; Vaudaux P; Magnin M; el Mestikawy Y; Proctor RA; Lew DP; Vasey H
    J Orthop Res; 1996 Nov; 14(6):914-20. PubMed ID: 8982134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation, bacterial adhesion and host response on polymeric implants--issues and prevention.
    Pavithra D; Doble M
    Biomed Mater; 2008 Sep; 3(3):034003. PubMed ID: 18689922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of fibronectin in staphylococcal colonisation of fibrin thrombi and plastic surfaces.
    Valentin-Weigand P; Timmis KN; Chhatwal GS
    J Med Microbiol; 1993 Feb; 38(2):90-5. PubMed ID: 7679146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions.
    Patel JD; Iwasaki Y; Ishihara K; Anderson JM
    J Biomed Mater Res A; 2005 Jun; 73(3):359-66. PubMed ID: 15800952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment.
    Vadillo-Rodríguez V; Pacha-Olivenza MA; Gónzalez-Martín ML; Bruque JM; Gallardo-Moreno AM
    J Biomed Mater Res A; 2013 May; 101(5):1397-404. PubMed ID: 23076738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces.
    Xu LC; Siedlecki CA
    Biomed Mater; 2014 Jun; 9(3):035003. PubMed ID: 24687453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial colonization of prosthetic devices. V. attachment of coagulase-negative staphylococci and "slime"-production on chemically pure synthetic polymers.
    Ludwicka A; Locci R; Jansen B; Peters G; Pulverer G
    Zentralbl Bakteriol Mikrobiol Hyg B; 1983 Sep; 177(6):527-32. PubMed ID: 6670410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial polymers: physicochemical aspects of their interactions at interfaces.
    Neu TR; Marshall KC
    J Biomater Appl; 1990 Oct; 5(2):107-33. PubMed ID: 2266486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibition of Staphylococcus epidermidis adhesion on titanium surface with bioactive water-soluble copolymers bearing sulfonate, phosphate or carboxylate functions].
    Poussard L; Ouédraogo CP; Pavon-Djavid G; Migonney V
    Pathol Biol (Paris); 2012 Apr; 60(2):84-90. PubMed ID: 22406062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infections from biomaterials and implants: a race for the surface.
    Gristina AG; Naylor P; Myrvik Q
    Med Prog Technol; 1988-1989; 14(3-4):205-24. PubMed ID: 2978593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface proteins of coagulase-negative staphylococci: their role in adherence to biomaterials and in opsonization.
    Fleer A; Timmerman CP; Besnier JM; Pascual A; Verhoef J
    J Biomater Appl; 1990 Oct; 5(2):154-65. PubMed ID: 2266488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preventing bacterial adhesion onto surfaces: the low-surface-energy approach.
    Tsibouklis J; Stone M; Thorpe AA; Graham P; Peters V; Heerlien R; Smith JR; Green KL; Nevell TG
    Biomaterials; 1999 Jul; 20(13):1229-35. PubMed ID: 10395392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of experimental design in the evaluation of the influence of proteins in bacterial adherence to polymers.
    Carballo J; Ferreirós CM; Criado MT
    Med Microbiol Immunol; 1991; 180(3):149-55. PubMed ID: 1921857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of protein environment and bioactive polymer grafting in the S. epidermidis response to titanium alloy for biomedical applications.
    Vasconcelos DM; Falentin-Daudré C; Blanquaert D; Thomas D; Granja PL; Migonney V
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():176-83. PubMed ID: 25491817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of protein and urine on uropathogen adhesion to polymer substrata.
    Hawthorn L; Reid G
    J Biomed Mater Res; 1990 Oct; 24(10):1325-32. PubMed ID: 2283351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers.
    Harris LG; Tosatti S; Wieland M; Textor M; Richards RG
    Biomaterials; 2004 Aug; 25(18):4135-48. PubMed ID: 15046904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation.
    Xu LC; Siedlecki CA
    Acta Biomater; 2012 Jan; 8(1):72-81. PubMed ID: 21884831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.