These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 22664916)
1. MicroRNAs in diabetes and diabetes-associated complications. Lorenzen J; Kumarswamy R; Dangwal S; Thum T RNA Biol; 2012 Jun; 9(6):820-7. PubMed ID: 22664916 [TBL] [Abstract][Full Text] [Related]
2. Molecular medicine of microRNAs: structure, function and implications for diabetes. Hennessy E; O'Driscoll L Expert Rev Mol Med; 2008 Aug; 10():e24. PubMed ID: 18702835 [TBL] [Abstract][Full Text] [Related]
3. Are extracellular microRNAs involved in type 2 diabetes and related pathologies? Rome S Clin Biochem; 2013 Jul; 46(10-11):937-45. PubMed ID: 23499584 [TBL] [Abstract][Full Text] [Related]
4. Involvement of MicroRNAs in Diabetes and Its Complications. Wu B; Miller D Methods Mol Biol; 2017; 1617():225-239. PubMed ID: 28540689 [TBL] [Abstract][Full Text] [Related]
5. MicroRNAs and Cardiovascular Disease in Diabetes Mellitus. Ding Y; Sun X; Shan PF Biomed Res Int; 2017; 2017():4080364. PubMed ID: 28299324 [TBL] [Abstract][Full Text] [Related]
6. The vascular smooth muscle cell: a therapeutic target in Type 2 diabetes? Porter KE; Riches K Clin Sci (Lond); 2013 Aug; 125(4):167-82. PubMed ID: 23634936 [TBL] [Abstract][Full Text] [Related]
7. MicroRNAs: the underlying mediators of pathogenetic processes in vascular complications of diabetes. Ruiz MA; Chakrabarti S Can J Diabetes; 2013 Oct; 37(5):339-44. PubMed ID: 24500562 [TBL] [Abstract][Full Text] [Related]
8. microRNA in the development of diabetic complications. McClelland AD; Kantharidis P Clin Sci (Lond); 2014 Jan; 126(2):95-110. PubMed ID: 24059587 [TBL] [Abstract][Full Text] [Related]
9. Role of microRNAs in peripheral artery disease (review). Zhou X; Yuan P; He Y Mol Med Rep; 2012 Oct; 6(4):695-700. PubMed ID: 22767222 [TBL] [Abstract][Full Text] [Related]
10. MicroRNAs: a new ray of hope for diabetes mellitus. Kumar M; Nath S; Prasad HK; Sharma GD; Li Y Protein Cell; 2012 Oct; 3(10):726-38. PubMed ID: 23055040 [TBL] [Abstract][Full Text] [Related]
11. Role of exosome-derived miRNAs in diabetic wound angiogenesis. Chen WT; Luo Y; Chen XM; Xiao JH Mol Cell Biochem; 2024 Oct; 479(10):2565-2580. PubMed ID: 37891446 [TBL] [Abstract][Full Text] [Related]
13. Diabetes might adversely affect expression and function of interstitial cells in the urinary bladder and urethra in humans: a new mechanism in the development of diabetic lower urinary dysfunction? Canda AE Med Hypotheses; 2011 May; 76(5):632-4. PubMed ID: 21288651 [TBL] [Abstract][Full Text] [Related]
14. Oxidative stress: a key contributor to diabetic cardiomyopathy. Khullar M; Al-Shudiefat AA; Ludke A; Binepal G; Singal PK Can J Physiol Pharmacol; 2010 Mar; 88(3):233-40. PubMed ID: 20393588 [TBL] [Abstract][Full Text] [Related]
16. Role and therapeutic potential of microRNAs in diabetes. Kolfschoten IG; Roggli E; Nesca V; Regazzi R Diabetes Obes Metab; 2009 Nov; 11 Suppl 4():118-29. PubMed ID: 19817794 [TBL] [Abstract][Full Text] [Related]
17. Autophagy in diabetes: β-cell dysfunction, insulin resistance, and complications. Barlow AD; Thomas DC DNA Cell Biol; 2015 Apr; 34(4):252-60. PubMed ID: 25665094 [TBL] [Abstract][Full Text] [Related]
18. The late complications of diabetes mellitus. Squadrito G; Cucinotta D Ann Ital Med Int; 1991; 6(1 Pt 2):126-36. PubMed ID: 1742148 [TBL] [Abstract][Full Text] [Related]
19. The role of blood flow and microRNAs in blood vessel development. Liu D; Krueger J; Le Noble F Int J Dev Biol; 2011; 55(4-5):419-29. PubMed ID: 21858767 [TBL] [Abstract][Full Text] [Related]
20. MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Figueira MF; Monnerat-Cahli G; Medei E; Carvalho AB; Morales MM; Lamas ME; da Fonseca RN; Souza-Menezes J Acta Physiol (Oxf); 2014 Jul; 211(3):491-500. PubMed ID: 24837225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]