BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22665316)

  • 1. Identification of endogenous SUMO1 accepter sites by mass spectrometry.
    Hsiao HH; Meulmeester E; Urlaub H
    Methods Mol Biol; 2012; 893():431-41. PubMed ID: 22665316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides.
    Hsiao HH; Meulmeester E; Frank BT; Melchior F; Urlaub H
    Mol Cell Proteomics; 2009 Dec; 8(12):2664-75. PubMed ID: 19721078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibody-free enrichment method for proteome-wide analysis of endogenous SUMOylation sites.
    Li Y; Sun M; Hu Y; Shan Y; Liang Z; Zhang L; Zhang Y
    Anal Chim Acta; 2021 Apr; 1154():338324. PubMed ID: 33736815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif.
    Matic I; Schimmel J; Hendriks IA; van Santen MA; van de Rijke F; van Dam H; Gnad F; Mann M; Vertegaal AC
    Mol Cell; 2010 Aug; 39(4):641-52. PubMed ID: 20797634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical guide to the FLEXIQuant method.
    Singh S; Kirchner M; Steen JA; Steen H
    Methods Mol Biol; 2012; 893():295-319. PubMed ID: 22665308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic Cells Redistribute SUMO1 upon Forced SUMO1 Overexpression.
    Lee A; Zhu Y; Sabo Y; Goff SP
    mBio; 2019 Dec; 10(6):. PubMed ID: 31796536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.
    Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA
    Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR).
    Wu SL; Kim J; Hancock WS; Karger B
    J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide Mapping of Endogenous SUMOylation Sites in Mouse Testis.
    Cai L; Tu J; Song L; Gao Z; Li K; Wang Y; Liu Y; Zhong F; Ge R; Qin J; Ding C; He F
    Mol Cell Proteomics; 2017 May; 16(5):717-727. PubMed ID: 28289178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.
    Lamoliatte F; Bonneil E; Durette C; Caron-Lizotte O; Wildemann D; Zerweck J; Wenshuk H; Thibault P
    Mol Cell Proteomics; 2013 Sep; 12(9):2536-50. PubMed ID: 23750026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified database search strategy leads to improved identification of in vitro brominated peptides spiked into a complex proteomic sample.
    Liu H; Lichti CF; Mirfattah B; Frahm J; Nilsson CL
    J Proteome Res; 2013 Sep; 12(9):4248-54. PubMed ID: 23898862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and quantitation of SUMO chains by mass spectrometry.
    Matic I; Hay RT
    Methods Mol Biol; 2012; 832():239-47. PubMed ID: 22350890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the cattle liver proteome by high-sensitive liquid chromatography coupled with mass spectrometry method.
    Timperio AM; D'Amici GM; Zolla L
    Methods Mol Biol; 2012; 909():43-62. PubMed ID: 22903708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human SUMO fusion systems enhance protein expression and solubility.
    Wang Z; Li H; Guan W; Ling H; Wang Z; Mu T; Shuler FD; Fang X
    Protein Expr Purif; 2010 Oct; 73(2):203-8. PubMed ID: 20457256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Sumoylation.
    Breucker J; Pichler A
    Methods Mol Biol; 2019; 1934():223-233. PubMed ID: 31256382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The putative nuclear localization signal of the human RAD52 protein is a potential sumoylation site.
    Saito K; Kagawa W; Suzuki T; Suzuki H; Yokoyama S; Saitoh H; Tashiro S; Dohmae N; Kurumizaka H
    J Biochem; 2010 Jun; 147(6):833-42. PubMed ID: 20190268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein.
    Oh YH; Hong MY; Jin Z; Lee T; Han MK; Park S; Kim HS
    Biosens Bioelectron; 2007 Feb; 22(7):1260-7. PubMed ID: 16820290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System-wide identification of wild-type SUMO-2 conjugation sites.
    Hendriks IA; D'Souza RC; Chang JG; Mann M; Vertegaal AC
    Nat Commun; 2015 Jun; 6():7289. PubMed ID: 26073453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.