These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 22665502)

  • 1. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of retinal images containing bright lesions using sparse coded features and SVM.
    Sidibé D; Sadek I; Mériaudeau F
    Comput Biol Med; 2015 Jul; 62():175-84. PubMed ID: 25935125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DREAM: diabetic retinopathy analysis using machine learning.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2014 Sep; 18(5):1717-28. PubMed ID: 25192577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal filter framework for automated, instantaneous detection of lesions in retinal images.
    Quellec G; Russell SR; Abramoff MD
    IEEE Trans Med Imaging; 2011 Feb; 30(2):523-33. PubMed ID: 21292586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
    Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M
    Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and classification of retinal lesions for grading of diabetic retinopathy.
    Usman Akram M; Khalid S; Tariq A; Khan SA; Azam F
    Comput Biol Med; 2014 Feb; 45():161-71. PubMed ID: 24480176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of red lesions in digital color fundus photographs.
    Niemeijer M; van Ginneken B; Staal J; Suttorp-Schulten MS; Abràmoff MD
    IEEE Trans Med Imaging; 2005 May; 24(5):584-92. PubMed ID: 15889546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy.
    Narasimha-Iyer H; Can A; Roysam B; Stewart CV; Tanenbaum HL; Majerovics A; Singh H
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1084-98. PubMed ID: 16761836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiple-instance learning framework for diabetic retinopathy screening.
    Quellec G; Lamard M; Abràmoff MD; Decencière E; Lay B; Erginay A; Cochener B; Cazuguel G
    Med Image Anal; 2012 Aug; 16(6):1228-40. PubMed ID: 22850462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
    Seoud L; Hurtut T; Chelbi J; Cheriet F; Langlois JM
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1116-26. PubMed ID: 26701180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.