BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 2266554)

  • 1. Strength and co-operativity of contributions of surface salt bridges to protein stability.
    Horovitz A; Serrano L; Avron B; Bycroft M; Fersht AR
    J Mol Biol; 1990 Dec; 216(4):1031-44. PubMed ID: 2266554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-operative interactions during protein folding.
    Horovitz A; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):733-40. PubMed ID: 1569552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis.
    Sun DP; Sauer U; Nicholson H; Matthews BW
    Biochemistry; 1991 Jul; 30(29):7142-53. PubMed ID: 1854726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative helix stabilization by complex Arg-Glu salt bridges.
    Olson CA; Spek EJ; Shi Z; Vologodskii A; Kallenbach NR
    Proteins; 2001 Aug; 44(2):123-32. PubMed ID: 11391775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and thermodynamic studies on a salt-bridge triad in the NADP-binding domain of glutamate dehydrogenase from Thermotoga maritima: cooperativity and electrostatic contribution to stability.
    Lebbink JH; Consalvi V; Chiaraluce R; Berndt KD; Ladenstein R
    Biochemistry; 2002 Dec; 41(52):15524-35. PubMed ID: 12501181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of two buried salt bridges in the stability and folding pathway of barnase.
    Tissot AC; Vuilleumier S; Fersht AR
    Biochemistry; 1996 May; 35(21):6786-94. PubMed ID: 8639630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface salt bridges, double-mutant cycles, and protein stability: an experimental and computational analysis of the interaction of the Asp 23 side chain with the N-terminus of the N-terminal domain of the ribosomal protein l9.
    Luisi DL; Snow CD; Lin JJ; Hendsch ZS; Tidor B; Raleigh DP
    Biochemistry; 2003 Jun; 42(23):7050-60. PubMed ID: 12795600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles.
    Serrano L; Horovitz A; Avron B; Bycroft M; Fersht AR
    Biochemistry; 1990 Oct; 29(40):9343-52. PubMed ID: 2248951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of salt bridges near the surface of a protein to the conformational stability.
    Takano K; Tsuchimori K; Yamagata Y; Yutani K
    Biochemistry; 2000 Oct; 39(40):12375-81. PubMed ID: 11015217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-bridge energetics in halophilic proteins.
    Nayek A; Sen Gupta PS; Banerjee S; Mondal B; Bandyopadhyay AK
    PLoS One; 2014; 9(4):e93862. PubMed ID: 24743799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic-aromatic interactions and protein stability. Investigation by double-mutant cycles.
    Serrano L; Bycroft M; Fersht AR
    J Mol Biol; 1991 Mar; 218(2):465-75. PubMed ID: 2010920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of surface salt bridges to protein stability: guidelines for protein engineering.
    Makhatadze GI; Loladze VV; Ermolenko DN; Chen X; Thomas ST
    J Mol Biol; 2003 Apr; 327(5):1135-48. PubMed ID: 12662936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental assignment of the structure of the transition state for the association of barnase and barstar.
    Frisch C; Fersht AR; Schreiber G
    J Mol Biol; 2001 Apr; 308(1):69-77. PubMed ID: 11302708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI; Hünenberger PH; McCammon JA
    J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural double-mutant cycle: estimating the strength of a buried salt bridge in barnase.
    Vaughan CK; Harryson P; Buckle AM; Fersht AR
    Acta Crystallogr D Biol Crystallogr; 2002 Apr; 58(Pt 4):591-600. PubMed ID: 11914482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid and thermal denaturation of barnase investigated by molecular dynamics simulations.
    Caflisch A; Karplus M
    J Mol Biol; 1995 Oct; 252(5):672-708. PubMed ID: 7563082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface salt bridges stabilize the GCN4 leucine zipper.
    Spek EJ; Bui AH; Lu M; Kallenbach NR
    Protein Sci; 1998 Nov; 7(11):2431-7. PubMed ID: 9828010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.