These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 22665967)

  • 41. Müller glial responses compensate for degenerating photoreceptors in retinitis pigmentosa.
    Tomita Y; Qiu C; Bull E; Allen W; Kotoda Y; Talukdar S; Smith LEH; Fu Z
    Exp Mol Med; 2021 Nov; 53(11):1748-1758. PubMed ID: 34799683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cone degeneration following rod ablation in a reversible model of retinal degeneration.
    Choi RY; Engbretson GA; Solessio EC; Jones GA; Coughlin A; Aleksic I; Zuber ME
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):364-73. PubMed ID: 20720220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shifting the balance of autophagy and proteasome activation reduces proteotoxic cell death: a novel therapeutic approach for restoring photoreceptor homeostasis.
    Qiu Y; Yao J; Jia L; Thompson DA; Zacks DN
    Cell Death Dis; 2019 Jul; 10(8):547. PubMed ID: 31320609
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Knockout of Ca
    Kilicarslan I; Zanetti L; Novelli E; Schwarzer C; Strettoi E; Koschak A
    Sci Rep; 2021 Jul; 11(1):15146. PubMed ID: 34312410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa.
    Orlans HO; Barnard AR; MacLaren RE
    Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa.
    Ohnaka M; Miki K; Gong YY; Stevens R; Iwase T; Hackett SF; Campochiaro PA
    J Neurochem; 2012 Sep; 122(5):1047-53. PubMed ID: 22726126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.
    Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL
    J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In retinitis pigmentosa TrkC.T1-dependent vectorial Erk activity upregulates glial TNF-α, causing selective neuronal death.
    Galán A; Jmaeff S; Barcelona PF; Brahimi F; Sarunic MV; Saragovi HU
    Cell Death Dis; 2017 Dec; 8(12):3222. PubMed ID: 29242588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuronatin is a stress-responsive protein of rod photoreceptors.
    Shinde V; Pitale PM; Howse W; Gorbatyuk O; Gorbatyuk M
    Neuroscience; 2016 Jul; 328():1-8. PubMed ID: 27109921
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa.
    Fariss RN; Li ZY; Milam AH
    Am J Ophthalmol; 2000 Feb; 129(2):215-23. PubMed ID: 10682975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The inhibitor of phagocytosis, O-phospho-L-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina.
    Bailey TJ; Fossum SL; Fimbel SM; Montgomery JE; Hyde DR
    Exp Eye Res; 2010 Nov; 91(5):601-12. PubMed ID: 20696157
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Retinal remodeling in human retinitis pigmentosa.
    Jones BW; Pfeiffer RL; Ferrell WD; Watt CB; Marmor M; Marc RE
    Exp Eye Res; 2016 Sep; 150():149-65. PubMed ID: 27020758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa.
    Santhanam A; Shihabeddin E; Wei H; Wu J; O'Brien J
    Cell Mol Life Sci; 2023 Nov; 80(12):362. PubMed ID: 37979052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa.
    Narayan DS; Ao J; Wood JPM; Casson RJ; Chidlow G
    BMC Neurosci; 2019 Sep; 20(1):46. PubMed ID: 31481030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acute and Protracted Cell Death in Light-Induced Retinal Degeneration in the Canine Model of Rhodopsin Autosomal Dominant Retinitis Pigmentosa.
    Sudharsan R; Simone KM; Anderson NP; Aguirre GD; Beltran WA
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):270-281. PubMed ID: 28114588
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The urokinase-type plasminogen activator system as drug target in retinitis pigmentosa: New pre-clinical evidence in the rd10 mouse model.
    Cammalleri M; Dal Monte M; Locri F; Pecci V; De Rosa M; Pavone V; Bagnoli P
    J Cell Mol Med; 2019 Aug; 23(8):5176-5192. PubMed ID: 31251468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Retinal Pigment Epithelium Remodeling in Mouse Models of Retinitis Pigmentosa.
    Napoli D; Biagioni M; Billeri F; Di Marco B; Orsini N; Novelli E; Strettoi E
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microglia Inhibition Delays Retinal Degeneration Due to MerTK Phagocytosis Receptor Deficiency.
    Lew DS; Mazzoni F; Finnemann SC
    Front Immunol; 2020; 11():1463. PubMed ID: 32765507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.