These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22666413)

  • 1. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.
    Rasila TS; Vihinen M; Paulin L; Haapa-Paananen S; Savilahti H
    PLoS One; 2012; 7(5):e37922. PubMed ID: 22666413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome.
    Mariconda S; Namgoong SY; Yoon KH; Jiang H; Harshey RM
    J Biosci; 2000 Dec; 25(4):347-60. PubMed ID: 11120587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering.
    Rasila TS; Pulkkinen E; Kiljunen S; Haapa-Paananen S; Pajunen MI; Salminen A; Paulin L; Vihinen M; Rice PA; Savilahti H
    Nucleic Acids Res; 2018 May; 46(9):4649-4661. PubMed ID: 29294068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination.
    Krementsova E; Giffin MJ; Pincus D; Baker TA
    J Biol Chem; 1998 Nov; 273(47):31358-65. PubMed ID: 9813045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.
    Schumacher S; Clubb RT; Cai M; Mizuuchi K; Clore GM; Gronenborn AM
    EMBO J; 1997 Dec; 16(24):7532-41. PubMed ID: 9405381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and positional requirements for DNA sites in a mu transpososome.
    Goldhaber-Gordon I; Early MH; Gray MK; Baker TA
    J Biol Chem; 2002 Mar; 277(10):7703-12. PubMed ID: 11756424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative sequence analysis of IS50/Tn5 transposase.
    Reznikoff WS; Bordenstein SR; Apodaca J
    J Bacteriol; 2004 Dec; 186(24):8240-7. PubMed ID: 15576772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA.
    Goldhaber-Gordon I; Williams TL; Baker TA
    J Biol Chem; 2002 Mar; 277(10):7694-702. PubMed ID: 11756423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries.
    Guérillot R; Siguier P; Gourbeyre E; Chandler M; Glaser P
    Genome Biol Evol; 2014 Feb; 6(2):260-72. PubMed ID: 24418649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA repair by the cryptic endonuclease activity of Mu transposase.
    Choi W; Harshey RM
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance.
    Rubio-Cosials A; Schulz EC; Lambertsen L; Smyshlyaev G; Rojas-Cordova C; Forslund K; Karaca E; Bebel A; Bork P; Barabas O
    Cell; 2018 Mar; 173(1):208-220.e20. PubMed ID: 29551265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal domain-deleted mu transposase exhibits increased transposition activity with low target site preference in modified buffers.
    Kim YC; Morrison SL
    J Mol Microbiol Biotechnol; 2009; 17(1):30-40. PubMed ID: 19033677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering the DNA-binding specificity of Mu transposase in vitro.
    Namgoong SY; Sankaralingam S; Harshey RM
    Nucleic Acids Res; 1998 Aug; 26(15):3521-7. PubMed ID: 9671813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The μ transpososome structure sheds light on DDE recombinase evolution.
    Montaño SP; Pigli YZ; Rice PA
    Nature; 2012 Nov; 491(7424):413-7. PubMed ID: 23135398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase.
    Clubb RT; Schumacher S; Mizuuchi K; Gronenborn AM; Clore GM
    J Mol Biol; 1997 Oct; 273(1):19-25. PubMed ID: 9367742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes.
    Sinzelle L; Kapitonov VV; Grzela DP; Jursch T; Jurka J; Izsvák Z; Ivics Z
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4715-20. PubMed ID: 18339812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components.
    Saariaho AH; Lamberg A; Elo S; Savilahti H
    Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tn10 transposase mutants with altered transpososome unfolding properties are defective in hairpin formation.
    Humayun S; Wardle SJ; Shilton BH; Pribil PA; Liburd J; Haniford DB
    J Mol Biol; 2005 Feb; 346(3):703-16. PubMed ID: 15713457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction.
    Naigamwalla DZ; Coros CJ; Wu Z; Chaconas G
    J Mol Biol; 1998 Sep; 282(2):265-74. PubMed ID: 9735286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes.
    Blundell-Hunter G; Tellier M; Chalmers R
    Nucleic Acids Res; 2018 Oct; 46(18):9637-9646. PubMed ID: 30184164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.