These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2266752)

  • 21. The pulsatile impeller pump for left ventricular assist.
    Wang SS; Chu SH; Chou NK; Qian KX
    Artif Organs; 1996 Dec; 20(12):1310-3. PubMed ID: 8947454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical solution for blood flow in a centrifugal ventricular assist device.
    Wood HG; Anderson J; Allaire PE; McDaniel JC; Bearnson G
    Int J Artif Organs; 1999 Dec; 22(12):827-36. PubMed ID: 10654880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New investigations of a pulsatile impeller blood pump.
    Qian KX
    ASAIO Trans; 1990; 36(1):33-5. PubMed ID: 2306388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The realization of a pulsatile implantable impeller pump with low hemolysis.
    Qian KX; Fei Q; Lin KD; Pi KD; Wang YP
    Artif Organs; 1989 Apr; 13(2):162-9. PubMed ID: 2705888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Pulsatile rotary pumps with low hemolysis].
    Qian K; Zeng P; Ru W; Yuan H; Feng Z; Li L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):391-3. PubMed ID: 11605497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study.
    Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y
    Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Haematological variations in pigs during experimental left ventricular assistance with a pulsatile impeller pump.
    Qian KX; Wang SS; Chu SH
    Med Eng Phys; 1994 Jul; 16(4):348-50. PubMed ID: 7952672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experience in reducing the hemolysis of an impeller assist heart.
    Qian KX
    ASAIO Trans; 1989; 35(1):46-53. PubMed ID: 2730808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Verification of a thrombus induction method at the target point inside the blood pump using a fibrinogen coating for a thrombus detection study.
    Seki H; Fujiwara T; Hijikata W; Murashige T; Maruyama T; Yokota S; Ogata A; Ouchi K; Mizuno T; Arai H
    Artif Organs; 2020 Sep; 44(9):968-975. PubMed ID: 32464697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a centrifugal pump with improved antithrombogenicity and hemolytic property for chronic circulatory support.
    Taenaka Y; Wakisaka Y; Masuzawa T; Tatsumi E; Toda K; Miyazaki K; Eya K; Baba Y; Nakatani T; Ohno T; Nishimura T; Takano H
    Artif Organs; 1996 Jun; 20(6):491-6. PubMed ID: 8817945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
    Takiura K; Masuzawa T; Endo S; Wakisaka Y; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):393-8. PubMed ID: 9609347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump.
    Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of surface roughness on hemolysis in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Glueck J; Benkowski R; Nosé Y
    ASAIO J; 1996; 42(5):M858-62. PubMed ID: 8945006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility.
    Wiegmann L; Boës S; de Zélicourt D; Thamsen B; Schmid Daners M; Meboldt M; Kurtcuoglu V
    Ann Biomed Eng; 2018 Mar; 46(3):417-428. PubMed ID: 29094293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.
    Nishimura I; Ichikawa S; Mikami M; Ishitoya H; Motomura T; Kawamura M; Linneweber J; Glueck J; Shinohara T; Nosé Y
    Biomed Mater Eng; 2013; 23(1-2):49-55. PubMed ID: 23442236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Vienna implantable centrifugal blood pump.
    Schima H; Trubel W; Wieselthaler G; Schmidt C; Müller MR; Siegl H; Losert U; Wolner E
    Artif Organs; 1994 Jul; 18(7):500-5. PubMed ID: 7980093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. More than 1 year continuous operation of a centrifugal pump with a magnetically suspended impeller.
    Nojiri C; Kijima T; Maekawa J; Horiuchi K; Kido T; Sugiyama T; Mori T; Sugiura N; Asada T; Shimane H; Nishimura K; Ban T; Akamatsu T; Ozaki T; Ito H; Suzuki M; Akutsu T
    ASAIO J; 1997; 43(5):M548-52. PubMed ID: 9360103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Numerical simulation and performance analysis of mixed flow blood pump].
    Luo J; Huang D; Xu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):296-303. PubMed ID: 32329282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.