BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 22667545)

  • 1. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin.
    Nagata T; Fedorov DG; Sawada T; Kitaura K; Gordon MS
    J Chem Phys; 2011 Jan; 134(3):034110. PubMed ID: 21261333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.
    Nakata H; Fedorov DG; Zahariev F; Schmidt MW; Kitaura K; Gordon MS; Nakamura S
    J Chem Phys; 2015 Mar; 142(12):124101. PubMed ID: 25833559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytic energy gradient in combined second-order Møller-Plesset perturbation theory and polarizable force field calculation.
    Li H
    J Phys Chem A; 2011 Oct; 115(42):11824-31. PubMed ID: 21905697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory.
    Thellamurege NM; Si D; Cui F; Li H
    J Chem Phys; 2014 May; 140(17):174115. PubMed ID: 24811633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient.
    Nakata H; Fedorov DG; Nagata T; Yokojima S; Ogata K; Kitaura K; Nakamura S
    J Chem Phys; 2012 Jul; 137(4):044110. PubMed ID: 22852600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD
    J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Møller-Plesset perturbation theory gradient in the generalized hybrid orbital quantum mechanical and molecular mechanical method.
    Jung J; Sugita Y; Ten-no S
    J Chem Phys; 2010 Feb; 132(8):084106. PubMed ID: 20192289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method.
    Ishikawa T; Kuwata K
    J Phys Chem Lett; 2012 Feb; 3(3):375-9. PubMed ID: 26285854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method.
    Pruitt SR; Nakata H; Nagata T; Mayes M; Alexeev Y; Fletcher G; Fedorov DG; Kitaura K; Gordon MS
    J Chem Theory Comput; 2016 Apr; 12(4):1423-35. PubMed ID: 26913837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.