These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22667620)

  • 1. Development of a pulse programmer for magnetic resonance imaging using a personal computer and a high-speed digital input-output board.
    Hashimoto S; Kose K; Haishi T
    Rev Sci Instrum; 2012 May; 83(5):053702. PubMed ID: 22667620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.
    Handa S; Domalain T; Kose K
    Rev Sci Instrum; 2007 Aug; 78(8):084705. PubMed ID: 17764345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile pulse programmer for magnetic resonance imaging.
    Ning R; Yang G; Li G
    Rev Sci Instrum; 2011 May; 82(5):054301. PubMed ID: 21639523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel programmable pulse generator with nanosecond resolution for pulsed electron paramagnetic resonance applications.
    Devasahayam N; Subramanian S; Krishna MC
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):026106. PubMed ID: 18315338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-field magnetic resonance imaging spectrometer using an oven-controlled crystal oscillator as the local oscillator of its radio frequency transceiver.
    Liang X; Tang X; Tang W; Gao JH
    Rev Sci Instrum; 2014 Sep; 85(9):094705. PubMed ID: 25273752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.
    Liang X; Binghe S; Yueping M; Ruyan Z
    Rev Sci Instrum; 2013 May; 84(5):054702. PubMed ID: 23742570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile pulse programmer for nuclear magnetic resonance.
    Adduci DJ; Gerstein BC
    Rev Sci Instrum; 1979 Nov; 50(11):1403. PubMed ID: 18699400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time image reconstruction and display system for MRI using a high-speed personal computer.
    Haishi T; Kose K
    J Magn Reson; 1998 Sep; 134(1):138-41. PubMed ID: 9740739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and implementation of an FPGA-based timing pulse programmer for pulsed-electron paramagnetic resonance applications.
    Sun L; Savory JJ; Warncke K
    Concepts Magn Reson Part B Magn Reson Eng; 2013 Aug; 43(3):100-109. PubMed ID: 25076864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse, a PC-based graphics pulse sequence editor for NMR and MRI.
    Wang H; Rosenfeld D; Braun M
    Australas Phys Eng Sci Med; 1989 Jun; 12(2):69-72. PubMed ID: 2764797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Computer-aided anesthesia monitoring. Experiences with the use of three systems in heart surgery].
    Petry A; Gockel H; Wulf H
    Anaesthesist; 1993 Aug; 42(8):528-35. PubMed ID: 8368474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Design of a digital spectrometer for the MRI system].
    Zhao C; Liu ZM; Zhou HQ; Feng HQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2007 May; 31(3):185-8. PubMed ID: 17672364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 12-bit and 8-bit gray scale resolution in MR imaging of the CNS. An ROC analysis.
    Smith HJ; Bakke SJ; Smevik B; Hald JK; Moen G; Rudenhed B; Abildgaard A
    Acta Radiol; 1992 Nov; 33(6):505-11. PubMed ID: 1449870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Computer simulation of a clinical magnet resonance tomography scanner for training purposes].
    Hackländer T; Mertens H; Cramer BM
    Rofo; 2004 Aug; 176(8):1151-6. PubMed ID: 15346291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A radio-frequency source using direct digital synthesis and field programmable gate array for nuclear magnetic resonance.
    Liang X; Weimin W
    Rev Sci Instrum; 2009 Dec; 80(12):124703. PubMed ID: 20059160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study.
    Mendichovszky IA; Cutajar M; Gordon I
    Eur J Radiol; 2009 Sep; 71(3):576-81. PubMed ID: 19004588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ODIN-object-oriented development interface for NMR.
    Jochimsen TH; von Mengershausen M
    J Magn Reson; 2004 Sep; 170(1):67-78. PubMed ID: 15324759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Algorithm of digital demodulation and filtering in MRI spectrometers].
    Pan WY; Liu ZM; Zhou HQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Jul; 32(4):271-4. PubMed ID: 18973037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variable torque motor compatible with magnetic resonance imaging.
    Roeck WW; Ha SH; Farmaka S; Nalcioglu O
    Rev Sci Instrum; 2009 Apr; 80(4):046108. PubMed ID: 19405704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.
    Terada Y; Tamada D; Kose K
    J Magn Reson; 2011 Oct; 212(2):355-61. PubMed ID: 21856197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.