BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 22667622)

  • 1. Design and analysis of multi-color confocal microscopy with a wavelength scanning detector.
    Do D; Chun W; Gweon DG
    Rev Sci Instrum; 2012 May; 83(5):053704. PubMed ID: 22667622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics.
    Sobhy MA; Elshenawy MM; Takahashi M; Whitman BH; Walter NG; Hamdan SM
    Rev Sci Instrum; 2011 Nov; 82(11):113702. PubMed ID: 22128979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a prism to compensate the image-shifting error of the Acousto-Optic tunable filter.
    Ryu SY; You JW; Kwak Y; Kim S
    Opt Express; 2008 Oct; 16(22):17138-47. PubMed ID: 18957994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.
    Bürmen M; Pernuš F; Likar B
    Appl Spectrosc; 2011 Apr; 65(4):393-401. PubMed ID: 21396186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed.
    Larson JM
    Cytometry A; 2006 Aug; 69(8):825-34. PubMed ID: 16969806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of AOTF in spectral analysis. 3. Application of AOTF in atomic emission spectral analysis].
    Chen ZY; Peng RF; Zhang ZX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Jun; 22(3):453-7. PubMed ID: 12938333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MWIR thermal imaging spectrometer based on the acousto-optic tunable filter.
    Zhao H; Ji Z; Jia G; Zhang Y; Li Y; Wang D
    Appl Opt; 2017 Sep; 56(25):7269-7276. PubMed ID: 29047991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrofluorometer based on acousto-optic tunable filters for rapid scanning and multicomponent sample analyses.
    Tran CD; Furlan RJ
    Anal Chem; 1993 Jul; 65(13):1675-81. PubMed ID: 7690197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosensors technologies: acousto-optic tunable filter-based hyperspectral and polarization imagers for fluorescence and spectroscopic imaging.
    Gupta N
    Methods Mol Biol; 2009; 503():293-305. PubMed ID: 19151948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SWIR AOTF Imaging Spectrometer Based on Single-pixel Imaging.
    Zhao H; Xu Z; Jiang H; Jia G
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acousto-optic tunable filter for dispersion characterization of time-domain optical coherence tomography systems.
    Chin C; Toadere F; Feuchter T; Leick L; Moselund P; Bradu A; Podoleanu A
    Appl Opt; 2016 Jul; 55(21):5707-14. PubMed ID: 27463927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Research of Spectral Polarization Imaging Detection System Based Dual-AOTFs].
    Zhang R; Chen YH; Li SW; Wang ZB; Wen TD; Wang YL; Li KW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1549-53. PubMed ID: 30001061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and demonstration of multimodal optical scanning microscopy for confocal and two-photon imaging.
    Chun W; Do D; Gweon DG
    Rev Sci Instrum; 2013 Jan; 84(1):013701. PubMed ID: 23387653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact imaging spectrograph for broadband spectral simultaneity.
    Torr MR; Torr DG
    Appl Opt; 1995 Dec; 34(34):7888-98. PubMed ID: 21068883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digitally synchronized LCD projector for multi-color fluorescence excitation in parallel capillary electrophoresis detection.
    Lin SW; Chang CH; Wu DY; Lin CH
    Biosens Bioelectron; 2010 Oct; 26(2):717-22. PubMed ID: 20650628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120.
    Kumazaki S; Hasegawa M; Ghoneim M; Shimizu Y; Okamoto K; Nishiyama M; Oh-Oka H; Terazima M
    J Microsc; 2007 Nov; 228(Pt 2):240-54. PubMed ID: 17970923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatic confocal microscopy with a novel wavelength detection method using transmittance.
    Kim T; Kim SH; Do D; Yoo H; Gweon D
    Opt Express; 2013 Mar; 21(5):6286-94. PubMed ID: 23482197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution two-grating spectrometer for dual wavelength spectral imaging.
    Gornushkin IB; Omenetto N; Smith BW; Winefordner JD
    Appl Spectrosc; 2004 Nov; 58(11):1341-6. PubMed ID: 18070408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.