BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22667631)

  • 1. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.
    Lin J; Valentine MT
    Rev Sci Instrum; 2012 May; 83(5):053905. PubMed ID: 22667631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.
    Yang Y; Valentine MT
    Methods Cell Biol; 2013; 115():75-96. PubMed ID: 23973067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems.
    Selvaggi L; Pasakarnis L; Brunner D; Aegerter CM
    Rev Sci Instrum; 2018 Apr; 89(4):045106. PubMed ID: 29716356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.
    Zacchia NA; Valentine MT
    Rev Sci Instrum; 2015 May; 86(5):053704. PubMed ID: 26026529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application.
    Périgo EA; Silva SC; de Sousa EM; Freitas AA; Cohen R; Nagamine LC; Takiishi H; Landgraf FJ
    Nanotechnology; 2012 May; 23(17):175704. PubMed ID: 22481311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring densities of solids and liquids using magnetic levitation: fundamentals.
    Mirica KA; Shevkoplyas SS; Phillips ST; Gupta M; Whitesides GM
    J Am Chem Soc; 2009 Jul; 131(29):10049-58. PubMed ID: 19621960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials.
    Yang Y; Lin J; Meschewski R; Watson E; Valentine MT
    Biotechniques; 2011 Jul; 51(1):29-34. PubMed ID: 21781050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The force-distance properties of attracting magnetic attachments for tooth movement in combination with clear sequential aligners.
    Phelan A; Petocz P; Walsh W; Darendeliler MA
    Aust Orthod J; 2012 Nov; 28(2):159-69. PubMed ID: 23304964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A force calibration standard for magnetic tweezers.
    Yu Z; Dulin D; Cnossen J; Köber M; van Oene MM; Ordu O; Berghuis BA; Hensgens T; Lipfert J; Dekker NH
    Rev Sci Instrum; 2014 Dec; 85(12):123114. PubMed ID: 25554279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards high-performance permanent magnets without rare earths.
    Kuz'min MD; Skokov KP; Jian H; Radulov I; Gutfleisch O
    J Phys Condens Matter; 2014 Feb; 26(6):064205. PubMed ID: 24469009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy.
    Krebs CR; Li L; Wolberg AS; Oldenburg AL
    Rev Sci Instrum; 2015 Jul; 86(7):075005. PubMed ID: 26233406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compact rotary magnetic tweezers device for dynamic material analysis.
    Berezney JP; Valentine MT
    Rev Sci Instrum; 2022 Sep; 93(9):093701. PubMed ID: 36182480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells.
    Mahaffy RE; Shih CK; MacKintosh FC; Käs J
    Phys Rev Lett; 2000 Jul; 85(4):880-3. PubMed ID: 10991422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation.
    Tang J; Sun B; Yin Q; Yang M; Hu J; Wang T
    J Mater Chem B; 2021 Nov; 9(44):9183-9190. PubMed ID: 34698328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers.
    Bausch AR; Möller W; Sackmann E
    Biophys J; 1999 Jan; 76(1 Pt 1):573-9. PubMed ID: 9876170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical trapping microrheology in cultured human cells.
    Bertseva E; Grebenkov D; Schmidhauser P; Gribkova S; Jeney S; Forró L
    Eur Phys J E Soft Matter; 2012 Jul; 35(7):63. PubMed ID: 22821510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface shear microrheometer with an optically driven oscillating probe particle.
    Park CY; Ou-Yang HD; Kim MW
    Rev Sci Instrum; 2011 Sep; 82(9):094702. PubMed ID: 21974607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life Cycle Assessment of Neodymium-Iron-Boron Magnet-to-Magnet Recycling for Electric Vehicle Motors.
    Jin H; Afiuny P; Dove S; Furlan G; Zakotnik M; Yih Y; Sutherland JW
    Environ Sci Technol; 2018 Mar; 52(6):3796-3802. PubMed ID: 29486124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benzoboroxole-functionalized magnetic core/shell microspheres for highly specific enrichment of glycoproteins under physiological conditions.
    Zhang Y; Ma W; Li D; Yu M; Guo J; Wang C
    Small; 2014 Apr; 10(7):1379-86. PubMed ID: 24307573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.