These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22667645)

  • 1. Development of a micro cell compression stimulator for evaluating real-time cellular responses.
    Nakashima Y; Yang Y; Minami K
    Rev Sci Instrum; 2012 May; 83(5):055004. PubMed ID: 22667645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of micro mechanical device having two-dimensional array of micro chambers for cell stretching.
    Minami K; Hayashi T; Sato K; Nakahara T
    Biomed Microdevices; 2018 Jan; 20(1):10. PubMed ID: 29305659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polymeric cell stretching device for real-time imaging with optical microscopy.
    Huang Y; Nguyen NT
    Biomed Microdevices; 2013 Dec; 15(6):1043-54. PubMed ID: 23868118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation.
    Sim WY; Park SW; Park SH; Min BH; Park SR; Yang SS
    Lab Chip; 2007 Dec; 7(12):1775-82. PubMed ID: 18030400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays.
    Moraes C; Wang G; Sun Y; Simmons CA
    Biomaterials; 2010 Jan; 31(3):577-84. PubMed ID: 19819010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes.
    Park JY; Lee DH; Lee EJ; Lee SH
    Lab Chip; 2009 Jul; 9(14):2043-9. PubMed ID: 19568673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device.
    Bartalena G; Grieder R; Sharma RI; Zambelli T; Muff R; Snedeker JG
    Biomed Microdevices; 2011 Apr; 13(2):291-301. PubMed ID: 21120698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The F-actin and adherence-dependent mechanical differentiation of normal epithelial cells after TGF-β1-induced EMT (tEMT) using a microplate measurement system.
    Wu TH; Chiou YW; Chiu WT; Tang MJ; Chen CH; Yeh ML
    Biomed Microdevices; 2014 Jun; 16(3):465-78. PubMed ID: 24627216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A device for simultaneous live cell imaging during uni-axial mechanical strain or compression.
    Gerstmair A; Fois G; Innerbichler S; Dietl P; Felder E
    J Appl Physiol (1985); 2009 Aug; 107(2):613-20. PubMed ID: 19498100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microactuator device for integrated measurement of epithelium mechanics.
    Mukundan V; Nelson WJ; Pruitt BL
    Biomed Microdevices; 2013 Feb; 15(1):117-23. PubMed ID: 22927158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valve-based microfluidic compression platform: single axon injury and regrowth.
    Hosmane S; Fournier A; Wright R; Rajbhandari L; Siddique R; Yang IH; Ramesh KT; Venkatesan A; Thakor N
    Lab Chip; 2011 Nov; 11(22):3888-95. PubMed ID: 21975691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts.
    Huang D; Liu Y; Huang Y; Xie Y; Shen K; Zhang D; Mou Y
    Connect Tissue Res; 2014; 55(5-6):391-6. PubMed ID: 25166894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell-surface interaction.
    Choi MJ; Park JY; Cha KJ; Rhie JW; Cho DW; Kim DS
    Biofabrication; 2012 Dec; 4(4):045006. PubMed ID: 23075468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.
    Fujita H; Van Dau T; Shimizu K; Hatsuda R; Sugiyama S; Nagamori E
    Biomed Microdevices; 2011 Feb; 13(1):123-9. PubMed ID: 20957437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: Microelectromechanical systems Coulter counter for cell monitoring and counting.
    Wu Y; Benson JD; Critser JK; Almasri M
    Rev Sci Instrum; 2010 Jul; 81(7):076103. PubMed ID: 20687769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells.
    Masuda T; Takahashi I; Anada T; Arai F; Fukuda T; Takano-Yamamoto T; Suzuki O
    J Biotechnol; 2008 Jan; 133(2):231-8. PubMed ID: 17904677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of high throughput perfusion micro 3-D cell culture platform for the precise study of cellular responses to extracellular conditions -effect of serum concentrations on the physiology of articular chondrocytes.
    Wu MH; Kuo CY
    Biomed Microdevices; 2011 Feb; 13(1):131-41. PubMed ID: 20957436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pneumatic cell stretching system for cardiac differentiation and culture.
    Kreutzer J; Ikonen L; Hirvonen J; Pekkanen-Mattila M; Aalto-Setälä K; Kallio P
    Med Eng Phys; 2014 Apr; 36(4):496-501. PubMed ID: 24148238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering.
    Sandino C; Planell JA; Lacroix D
    J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.