These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Tendon Biomechanics and Crimp Properties Following Fatigue Loading Are Influenced by Tendon Type and Age in Mice. Zuskov A; Freedman BR; Gordon JA; Sarver JJ; Buckley MR; Soslowsky LJ J Orthop Res; 2020 Jan; 38(1):36-42. PubMed ID: 31286548 [TBL] [Abstract][Full Text] [Related]
9. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage. Freedman BR; Zuskov A; Sarver JJ; Buckley MR; Soslowsky LJ J Orthop Res; 2015 Jun; 33(6):904-10. PubMed ID: 25773654 [TBL] [Abstract][Full Text] [Related]
10. Tenocyte contraction induces crimp formation in tendon-like tissue. Herchenhan A; Kalson NS; Holmes DF; Hill P; Kadler KE; Margetts L Biomech Model Mechanobiol; 2012 Mar; 11(3-4):449-59. PubMed ID: 21735243 [TBL] [Abstract][Full Text] [Related]
11. Age-related differences in collagen crimp patterns in the superficial digital flexor tendon core region of untrained horses. Patterson-Kane JC; Firth EC; Goodship AE; Parry DA Aust Vet J; 1997 Jan; 75(1):39-44. PubMed ID: 9034498 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of tendon crimp with applied tensile strain. Hansen KA; Weiss JA; Barton JK J Biomech Eng; 2002 Feb; 124(1):72-7. PubMed ID: 11871607 [TBL] [Abstract][Full Text] [Related]
13. Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. Lake SP; Miller KS; Elliott DM; Soslowsky LJ J Biomech; 2010 Mar; 43(4):727-32. PubMed ID: 19900677 [TBL] [Abstract][Full Text] [Related]
14. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Jett SV; Hudson LT; Baumwart R; Bohnstedt BN; Mir A; Burkhart HM; Holzapfel GA; Wu Y; Lee CH Acta Biomater; 2020 Jan; 102():149-168. PubMed ID: 31734412 [TBL] [Abstract][Full Text] [Related]
15. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. Lake SP; Miller KS; Elliott DM; Soslowsky LJ J Orthop Res; 2009 Dec; 27(12):1596-602. PubMed ID: 19544524 [TBL] [Abstract][Full Text] [Related]
16. Using a freeze substitution fixation technique and histological crimp analysis for characterizing regions of strain in ligaments loaded in situ. Boorman RS; Norman T; Matsen FA; Clark JM J Orthop Res; 2006 Apr; 24(4):793-9. PubMed ID: 16514649 [TBL] [Abstract][Full Text] [Related]
18. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. Lee PY; Fryc G; Gnalian J; Wang B; Hua Y; Waxman S; Zhong F; Yang B; Sigal IA Acta Biomater; 2024 Jan; 173():135-147. PubMed ID: 37967694 [TBL] [Abstract][Full Text] [Related]
19. The influence of testing angle on the biomechanical properties of the rat supraspinatus tendon. Newton MD; Davidson AA; Pomajzl R; Seta J; Kurdziel MD; Maerz T J Biomech; 2016 Dec; 49(16):4159-4163. PubMed ID: 27863739 [TBL] [Abstract][Full Text] [Related]
20. Crimp length decreases in lax tendons due to cytoskeletal tension, but is restored with tensional homeostasis. Lavagnino M; Brooks AE; Oslapas AN; Gardner KL; Arnoczky SP J Orthop Res; 2017 Mar; 35(3):573-579. PubMed ID: 27878991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]