BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 22667818)

  • 1. Reduced formation of brominated trihalomethanes during chlorination of bromide-containing waters in the presence of Mn(II).
    Qi Z; Yu Y; Li G; Gao Y; Li P; Shi B
    Sci Total Environ; 2024 Apr; 920():171001. PubMed ID: 38365033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Assessment of Reactive Bromine Species in Advanced Oxidation Processes: Differential Roles in Micropollutant Abatement in Bromide-Containing Water.
    Guo K; Zhang Y; Wu S; Qin W; Wang Y; Hua Z; Chen C; Fang J
    Environ Sci Technol; 2023 Dec; 57(48):20339-20348. PubMed ID: 37946521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sunlight enhanced the formation of tribromomethane from benzotriazole degradation during the sunlight/free chlorine treatment in the presence of bromide.
    Hsieh MC; Lee WN; Chu YH; Lin HH; Lin AY
    Chemosphere; 2024 Jun; 357():142039. PubMed ID: 38621488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation processes and me.
    von Gunten U
    Water Res; 2024 Apr; 253():121148. PubMed ID: 38387263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing-Enhanced Photoreduction of Iodate by Fulvic Acid.
    Du J; Hu Y; Kim K; Choi W
    Environ Sci Technol; 2023 Dec; 57(48):20272-20281. PubMed ID: 37943152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-induced acceleration of iodide oxidation and consequent iodination of dissolved organic matter to form organoiodine compounds.
    Gong X; He M; Hao Z; Zhao R; Liu J
    J Environ Sci (China); 2024 Oct; 144():67-75. PubMed ID: 38802239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT.
    Amachi S; Kawaguchi N; Muramatsu Y; Tsuchiya S; Watanabe Y; Shinoyama H; Fujii T
    Appl Environ Microbiol; 2007 Sep; 73(18):5725-30. PubMed ID: 17644635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rejection of Bromide and Bromate Ions by a Ceramic Membrane.
    Moslemi M; Davies SH; Masten SJ
    Environ Eng Sci; 2012 Dec; 29(12):1092-1096. PubMed ID: 23236251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromide of Potassium as a Substitute for the Iodide.
    West J Med Surg; 1847 May; 7(5):455. PubMed ID: 38210031
    [No Abstract]   [Full Text] [Related]  

  • 10. A Speedy and Inexpensive Process for Obtaining Radiographic Reduction on Bromide Paper.
    War Med (Paris); 1919; 2(7):1547-1548. PubMed ID: 37757219
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanistic Insight for Disinfection Byproduct Formation Potential of Peracetic Acid and Performic Acid in Halide-Containing Water.
    Wang J; Xu J; Kim J; Huang CH
    Environ Sci Technol; 2023 Nov; 57(47):18898-18908. PubMed ID: 37489812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Preformed Monochloramine Reactivity with Processed Natural Organic Matter and Scaling Methodology Development for Concentrated Waters.
    Kennicutt AR; Rossman PD; Bollman JD; Aho T; Abulikemu G; Pressman JG; Wahman DG
    ACS ES T Water; 2022 Oct; 2(12):2431-2440. PubMed ID: 36968336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions of α,β-Unsaturated Carbonyls with Free Chlorine, Free Bromine, and Combined Chlorine.
    Marron EL; Van Buren J; Cuthbertson AA; Darby E; von Gunten U; Sedlak DL
    Environ Sci Technol; 2021 Mar; 55(5):3305-3312. PubMed ID: 33565865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phototransformation of halophenolic disinfection byproducts in receiving seawater: Kinetics, products, and toxicity.
    Liu J; Zhang X; Li Y; Li W; Hang C; Sharma VK
    Water Res; 2019 Mar; 150():68-76. PubMed ID: 30508715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters.
    Yang Y; Pignatello JJ
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29027977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.
    Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U
    Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.
    Allard S; Nottle CE; Chan A; Joll C; von Gunten U
    Water Res; 2013 Apr; 47(6):1953-60. PubMed ID: 23351431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of bromide/iodide concentration and ratio on iodinated trihalomethane formation and speciation.
    Jones DB; Saglam A; Song H; Karanfil T
    Water Res; 2012 Jan; 46(1):11-20. PubMed ID: 22078225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Study on the Formation of Cl-/Br-/I-Trihalomethanes during Chlorination/Chloramination Combined with a Theoretical Cytotoxicity Evaluation.
    Allard S; Tan J; Joll CA; von Gunten U
    Environ Sci Technol; 2015 Sep; 49(18):11105-14. PubMed ID: 26280905
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.