BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22668007)

  • 21. Enhancement in adsorption and catalytic activity of enzymes immobilized on phosphorus- and calcium-modified MCM-41.
    Yasutaka K; Takato Y; Takashi K; Kohsuke M; Hiromi Y
    J Phys Chem B; 2011 Sep; 115(34):10335-45. PubMed ID: 21776977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general strategy for site-directed enzyme immobilization by using NiO nanoparticle decorated mesoporous silica.
    Ling D; Gao L; Wang J; Shokouhimehr M; Liu J; Yu Y; Hackett MJ; So PK; Zheng B; Yao Z; Xia J; Hyeon T
    Chemistry; 2014 Jun; 20(26):7916-21. PubMed ID: 24861357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles.
    Kranz B; Bürck J; Franzreb M; Köster R; Ulrich AS
    J Colloid Interface Sci; 2007 Dec; 316(2):413-9. PubMed ID: 17900604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization.
    Cerdobbel A; Desmet T; De Winter K; Maertens J; Soetaert W
    J Biotechnol; 2010 Oct; 150(1):125-30. PubMed ID: 20691225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes.
    Yang X; Cai Z; Ye Z; Chen S; Yang Y; Wang H; Liu Y; Cao A
    Nanoscale; 2012 Jan; 4(2):414-6. PubMed ID: 22095140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in the design of new epoxy supports for enzyme immobilization-stabilization.
    Mateo C; Grazú V; Pessela BC; Montes T; Palomo JM; Torres R; López-Gallego F; Fernández-Lafuente R; Guisán JM
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1593-601. PubMed ID: 18031273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver nanoparticle (AgNPs) doped gum acacia-gelatin-silica nanohybrid: an effective support for diastase immobilization.
    Singh V; Ahmed S
    Int J Biol Macromol; 2012 Mar; 50(2):353-61. PubMed ID: 22210525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study.
    Ashtari K; Khajeh K; Fasihi J; Ashtari P; Ramazani A; Vali H
    Int J Biol Macromol; 2012 May; 50(4):1063-9. PubMed ID: 22269345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica nanotubes for lysozyme immobilization.
    Ding HM; Shao L; Liu RJ; Xiao QG; Chen JF
    J Colloid Interface Sci; 2005 Oct; 290(1):102-6. PubMed ID: 15946670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme-modified nanoparticles using biomimetically synthesized silica.
    Zamora P; Narváez A; Domínguez E
    Bioelectrochemistry; 2009 Sep; 76(1-2):100-6. PubMed ID: 19540173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of microreactors with surface-immobilized biocatalysts for continuous transamination.
    Miložič N; Stojkovič G; Vogel A; Bouwes D; Žnidaršič-Plazl P
    N Biotechnol; 2018 Dec; 47():18-24. PubMed ID: 29758351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzyme encapsulation in nanoporous silica spheres.
    Wang Y; Caruso F
    Chem Commun (Camb); 2004 Jul; (13):1528-9. PubMed ID: 15216364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New monolithic chromatographic supports for macromolecules immobilization: challenges and opportunities.
    Calleri E; Ambrosini S; Temporini C; Massolini G
    J Pharm Biomed Anal; 2012 Oct; 69():64-76. PubMed ID: 22386208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly oriented recombinant glycosyltransferases: site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus sortase A.
    Ito T; Sadamoto R; Naruchi K; Togame H; Takemoto H; Kondo H; Nishimura S
    Biochemistry; 2010 Mar; 49(11):2604-14. PubMed ID: 20178374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.
    Bolivar JM; Krämer CE; Ungerböck B; Mayr T; Nidetzky B
    Biotechnol Bioeng; 2016 Sep; 113(9):1862-72. PubMed ID: 26927978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supports for enzyme immobilization.
    Trevisan HC; Mei LH
    An Acad Bras Cienc; 1992 Jun; 64(2):111-6. PubMed ID: 1338268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Immobilization of glucose oxidase on silica-based supports].
    Abraham M; Boross L; Szajani B
    Prikl Biokhim Mikrobiol; 1988; 24(4):499-503. PubMed ID: 2847142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of enzymes on porous silicas--benefits and challenges.
    Hartmann M; Kostrov X
    Chem Soc Rev; 2013 Aug; 42(15):6277-89. PubMed ID: 23765193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amylase-functionalized mesoporous silica thin films as robust biocatalyst platforms.
    Bellino MG; Regazzoni AE; Soler-Illia GJ
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):360-5. PubMed ID: 20356181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemically surface modified gel (CSMG): an excellent enzyme-immobilization matrix for industrial processes.
    David AE; Wang NS; Yang VC; Yang AJ
    J Biotechnol; 2006 Sep; 125(3):395-407. PubMed ID: 16644049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.