BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 22668415)

  • 1. Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice.
    Stern AR; Stern MM; Van Dyke ME; Jähn K; Prideaux M; Bonewald LF
    Biotechniques; 2012 Jun; 52(6):361-73. PubMed ID: 22668415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pigment epithelium-derived factor (PEDF) reduced expression and synthesis of SOST/sclerostin in bone explant cultures: implication of PEDF-osteocyte gene regulation in vivo.
    Li F; Cain JD; Tombran-Tink J; Niyibizi C
    J Bone Miner Metab; 2019 Sep; 37(5):773-779. PubMed ID: 30607618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure.
    Wang K; Le L; Chun BM; Tiede-Lewis LM; Shiflett LA; Prideaux M; Campos RS; Veno PA; Xie Y; Dusevich V; Bonewald LF; Dallas SL
    J Bone Miner Res; 2019 Jun; 34(6):979-995. PubMed ID: 30882939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of optimized in vitro assay methods for evaluating osteocyte functions.
    Honma M; Ikebuchi Y; Kariya Y; Suzuki H
    J Bone Miner Metab; 2015 Jan; 33(1):73-84. PubMed ID: 24381056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary Human Osteocyte Networks in Pure and Modified Collagen Gels.
    Bernhardt A; Weiser E; Wolf S; Vater C; Gelinsky M
    Tissue Eng Part A; 2019 Oct; 25(19-20):1347-1355. PubMed ID: 30648477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of osteocytes from human trabecular bone.
    Prideaux M; Schutz C; Wijenayaka AR; Findlay DM; Campbell DG; Solomon LB; Atkins GJ
    Bone; 2016 Jul; 88():64-72. PubMed ID: 27109824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human primary osteocyte differentiation in a 3D culture system.
    Boukhechba F; Balaguer T; Michiels JF; Ackermann K; Quincey D; Bouler JM; Pyerin W; Carle GF; Rochet N
    J Bone Miner Res; 2009 Nov; 24(11):1927-35. PubMed ID: 19419324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism.
    Atkins GJ; Rowe PS; Lim HP; Welldon KJ; Ormsby R; Wijenayaka AR; Zelenchuk L; Evdokiou A; Findlay DM
    J Bone Miner Res; 2011 Jul; 26(7):1425-36. PubMed ID: 21312267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved method to isolate primary human osteocytes from bone.
    Bernhardt A; Wolf S; Weiser E; Vater C; Gelinsky M
    Biomed Tech (Berl); 2020 Jan; 65(1):107-111. PubMed ID: 31348752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of Murine and Human Osteocytes.
    Prideaux M; Stern AR; Bonewald LF
    Methods Mol Biol; 2021; 2221():3-13. PubMed ID: 32979194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen tension is an important mediator of the transformation of osteoblasts to osteocytes.
    Hirao M; Hashimoto J; Yamasaki N; Ando W; Tsuboi H; Myoui A; Yoshikawa H
    J Bone Miner Metab; 2007; 25(5):266-76. PubMed ID: 17704991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of mouse osteocytes using cell fractionation for gene expression analysis.
    Halleux C; Kramer I; Allard C; Kneissel M
    Methods Mol Biol; 2012; 816():55-66. PubMed ID: 22130922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of osteocytes from mature and aged murine bone.
    Stern AR; Bonewald LF
    Methods Mol Biol; 2015; 1226():3-10. PubMed ID: 25331038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of an osteocyte-like phenotype by fibroblast growth factor-2.
    Gupta RR; Yoo DJ; Hebert C; Niger C; Stains JP
    Biochem Biophys Res Commun; 2010 Nov; 402(2):258-64. PubMed ID: 20934405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated primary osteocytes express functional gap junctions in vitro.
    Gu G; Nars M; Hentunen TA; Metsikkö K; Väänänen HK
    Cell Tissue Res; 2006 Feb; 323(2):263-71. PubMed ID: 16175387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation.
    Prideaux M; Loveridge N; Pitsillides AA; Farquharson C
    PLoS One; 2012; 7(5):e36786. PubMed ID: 22586496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo.
    Woo SM; Rosser J; Dusevich V; Kalajzic I; Bonewald LF
    J Bone Miner Res; 2011 Nov; 26(11):2634-46. PubMed ID: 21735478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo construction of human primary 3D-networked osteocytes.
    Sun Q; Choudhary S; Mannion C; Kissin Y; Zilberberg J; Lee WY
    Bone; 2017 Dec; 105():245-252. PubMed ID: 28942121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading.
    Moriishi T; Fukuyama R; Ito M; Miyazaki T; Maeno T; Kawai Y; Komori H; Komori T
    PLoS One; 2012; 7(6):e40143. PubMed ID: 22768243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DMP1 and MEPE expression are elevated in osteocytes after mechanical loading in vivo: theoretical role in controlling mineral quality in the perilacunar matrix.
    Harris SE; Gluhak-Heinrich J; Harris MA; Yang W; Bonewald LF; Riha D; Rowe PS; Robling AG; Turner CH; Feng JQ; McKee MD; Nicollela D
    J Musculoskelet Neuronal Interact; 2007; 7(4):313-5. PubMed ID: 18094489
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.