These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22669034)

  • 1. Flexible rule use: common neural substrates in children and adults.
    Wendelken C; Munakata Y; Baym C; Souza M; Bunge SA
    Dev Cogn Neurosci; 2012 Jul; 2(3):329-39. PubMed ID: 22669034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Coding of Task Rules in Frontoparietal Cortex: An Adaptive System for Flexible Cognitive Control.
    Woolgar A; Afshar S; Williams MA; Rich AN
    J Cogn Neurosci; 2015 Oct; 27(10):1895-911. PubMed ID: 26058604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Executive control over cognition: stronger and earlier rule-based modulation of spatial category signals in prefrontal cortex relative to parietal cortex.
    Goodwin SJ; Blackman RK; Sakellaridi S; Chafee MV
    J Neurosci; 2012 Mar; 32(10):3499-515. PubMed ID: 22399773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain regions mediating flexible rule use during development.
    Crone EA; Donohue SE; Honomichl R; Wendelken C; Bunge SA
    J Neurosci; 2006 Oct; 26(43):11239-47. PubMed ID: 17065463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
    Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA
    Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly and use of new task rules in fronto-parietal cortex.
    Dumontheil I; Thompson R; Duncan J
    J Cogn Neurosci; 2011 Jan; 23(1):168-82. PubMed ID: 20146600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching.
    Jamadar S; Hughes M; Fulham WR; Michie PT; Karayanidis F
    Neuroimage; 2010 May; 51(1):432-49. PubMed ID: 20123028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building the multitasking brain: An integrated perspective on functional brain activation during task-switching and dual-tasking.
    Ward N; Hussey EK; Cunningham EC; Paul EJ; McWilliams T; Kramer AF
    Neuropsychologia; 2019 Sep; 132():107149. PubMed ID: 31348930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociating the neural substrates for inhibition and shifting in domain-general cognitive control.
    Sun X; Li L; Mo C; Mo L; Wang R; Ding G
    Eur J Neurosci; 2019 Jul; 50(2):1920-1931. PubMed ID: 30706976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental differences in prefrontal activation during working memory maintenance and manipulation for different memory loads.
    Jolles DD; Kleibeuker SW; Rombouts SA; Crone EA
    Dev Sci; 2011 Jul; 14(4):713-24. PubMed ID: 21676092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cue-switch effects do not rely on the same neural systems as task-switch effects.
    De Baene W; Brass M
    Cogn Affect Behav Neurosci; 2011 Dec; 11(4):600-7. PubMed ID: 21874602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motivated cognitive control: reward incentives modulate preparatory neural activity during task-switching.
    Savine AC; Braver TS
    J Neurosci; 2010 Aug; 30(31):10294-305. PubMed ID: 20685974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A developmental neuroimaging investigation of the change paradigm.
    Thomas LA; Hall JM; Skup M; Jenkins SE; Pine DS; Leibenluft E
    Dev Sci; 2011 Jan; 14(1):148-61. PubMed ID: 21159096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contextually sensitive power changes across multiple frequency bands underpin cognitive control.
    Cooper PS; Darriba Á; Karayanidis F; Barceló F
    Neuroimage; 2016 May; 132():499-511. PubMed ID: 26975557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring adolescent cognitive control in a combined interference switching task.
    Mennigen E; Rodehacke S; Müller KU; Ripke S; Goschke T; Smolka MN
    Neuropsychologia; 2014 Aug; 61():175-89. PubMed ID: 24971708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.