These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Ajellal N; Carpentier JF; Guillaume C; Guillaume SM; Helou M; Poirier V; Sarazin Y; Trifonov A Dalton Trans; 2010 Sep; 39(36):8363-76. PubMed ID: 20424735 [TBL] [Abstract][Full Text] [Related]
4. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation. Osten KM; Mehrkhodavandi P Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695 [TBL] [Abstract][Full Text] [Related]
5. Polymerization of racemic beta-butyrolactone using supported catalysts: a simple access to isotactic polymers. Ajellal N; Durieux G; Delevoye L; Tricot G; Dujardin C; Thomas CM; Gauvin RM Chem Commun (Camb); 2010 Feb; 46(7):1032-4. PubMed ID: 20126703 [TBL] [Abstract][Full Text] [Related]
6. Involvement of catalytic amino acid residues in enzyme-catalyzed polymerization for the synthesis of polyesters. Suzuki Y; Taguchi S; Saito T; Toshima K; Matsumura S; Doi Y Biomacromolecules; 2001; 2(2):541-4. PubMed ID: 11749218 [TBL] [Abstract][Full Text] [Related]
7. High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters. Quan SM; Diaconescu PL Chem Commun (Camb); 2015 Jun; 51(47):9643-6. PubMed ID: 25973852 [TBL] [Abstract][Full Text] [Related]
8. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Thomas CM Chem Soc Rev; 2010 Jan; 39(1):165-73. PubMed ID: 20023847 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity. Yu I; Acosta-Ramírez A; Mehrkhodavandi P J Am Chem Soc; 2012 Aug; 134(30):12758-73. PubMed ID: 22765928 [TBL] [Abstract][Full Text] [Related]
10. Supported neodymium catalysts for isoprene and rac-β-butyrolactone polymerization: modulation of reactivity by controlled grafting. Terrier M; Brulé E; Vitorino MJ; Ajellal N; Robert C; Gauvin RM; Thomas CM Macromol Rapid Commun; 2011 Jan; 32(2):215-9. PubMed ID: 21433143 [TBL] [Abstract][Full Text] [Related]
11. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Tang X; Hong M; Falivene L; Caporaso L; Cavallo L; Chen EY J Am Chem Soc; 2016 Nov; 138(43):14326-14337. PubMed ID: 27700074 [TBL] [Abstract][Full Text] [Related]
12. Ring-opening polymerization of cyclic esters by cyclodextrins. Harada A; Osaki M; Takashima Y; Yamaguchi H Acc Chem Res; 2008 Sep; 41(9):1143-52. PubMed ID: 18690725 [TBL] [Abstract][Full Text] [Related]
13. Single-site beta-diiminate zinc catalysts for the ring-opening polymerization of beta-butyrolactone and beta-valerolactone to poly(3-hydroxyalkanoates). Rieth LR; Moore DR; Lobkovsky EB; Coates GW J Am Chem Soc; 2002 Dec; 124(51):15239-48. PubMed ID: 12487599 [TBL] [Abstract][Full Text] [Related]
14. Controlled ROP of β-butyrolactone simply mediated by amidine, guanidine, and phosphazene organocatalysts. Jaffredo CG; Carpentier JF; Guillaume SM Macromol Rapid Commun; 2012 Nov; 33(22):1938-44. PubMed ID: 22887774 [TBL] [Abstract][Full Text] [Related]
15. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Hong M; Chen EY Nat Chem; 2016 Jan; 8(1):42-9. PubMed ID: 26673263 [TBL] [Abstract][Full Text] [Related]
16. Copolymerization of β-Butyrolactones into Functionalized Polyhydroxyalkanoates Using Aluminum Catalysts: Influence of the Initiator in the Ring-Opening Polymerization Mechanism. Palenzuela M; Mula E; Blanco C; Sessini V; Shakaroun RM; Li H; Guillaume SM; Mosquera MEG Macromol Rapid Commun; 2024 Jul; 45(14):e2400091. PubMed ID: 38690992 [TBL] [Abstract][Full Text] [Related]
17. Yttrium complexes supported by linked bis(amide) ligand: synthesis, structure, and catalytic activity in the ring-opening polymerization of cyclic esters. Mahrova TV; Fukin GK; Cherkasov AV; Trifonov AA; Ajellal N; Carpentier JF Inorg Chem; 2009 May; 48(9):4258-66. PubMed ID: 19391633 [TBL] [Abstract][Full Text] [Related]
18. Correlation between structure of the lactones and substrate specificity in enzyme-catalyzed polymerization for the synthesis of polyesters. Suzuki Y; Taguchi S; Hisano T; Toshima K; Matsumura S; Doi Y Biomacromolecules; 2003; 4(3):537-43. PubMed ID: 12741767 [TBL] [Abstract][Full Text] [Related]
19. Versatile catalytic systems based on complexes of zinc, magnesium and calcium supported by a bulky bis(morpholinomethyl)phenoxy ligand for the large-scale immortal ring-opening polymerisation of cyclic esters. Poirier V; Roisnel T; Carpentier JF; Sarazin Y Dalton Trans; 2009 Nov; (44):9820-7. PubMed ID: 19885529 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of lactide-styrene diblock copolymers via catalytic immortal ring-opening polymerization of lactide and nitroxide-mediated polymerization of styrene. Poirier V; Duc M; Carpentier JF; Sarazin Y ChemSusChem; 2010 May; 3(5):579-90. PubMed ID: 20373325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]