These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA. Greenidge PA; Kramer C; Mozziconacci JC; Sherman W J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of a modular, extensible docking program: DOCK 5. Moustakas DT; Lang PT; Pegg S; Pettersen E; Kuntz ID; Brooijmans N; Rizzo RC J Comput Aided Mol Des; 2006; 20(10-11):601-19. PubMed ID: 17149653 [TBL] [Abstract][Full Text] [Related]
5. Local Interaction Density (LID), a Fast and Efficient Tool to Prioritize Docking Poses. Jacquemard C; Tran-Nguyen VK; Drwal MN; Rognan D; Kellenberger E Molecules; 2019 Jul; 24(14):. PubMed ID: 31323745 [TBL] [Abstract][Full Text] [Related]
6. PLHINT: A knowledge-driven computational approach based on the intermolecular H bond interactions at the protein-ligand interface from docking solutions. Kumar SP J Mol Graph Model; 2018 Jan; 79():194-212. PubMed ID: 29241118 [TBL] [Abstract][Full Text] [Related]
7. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock. Cleves AE; Jain AN J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276 [TBL] [Abstract][Full Text] [Related]
8. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Kellenberger E; Rodrigo J; Muller P; Rognan D Proteins; 2004 Nov; 57(2):225-42. PubMed ID: 15340911 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770 [TBL] [Abstract][Full Text] [Related]
10. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350 [TBL] [Abstract][Full Text] [Related]
11. Negative Image-Based Rescoring: Using Cavity Information to Improve Docking Screening. Pentikäinen OT; Postila PA Methods Mol Biol; 2021; 2266():141-154. PubMed ID: 33759125 [TBL] [Abstract][Full Text] [Related]
12. Variability in docking success rates due to dataset preparation. Corbeil CR; Williams CI; Labute P J Comput Aided Mol Des; 2012 Jun; 26(6):775-86. PubMed ID: 22566074 [TBL] [Abstract][Full Text] [Related]
13. Docking software performance in protein-glycosaminoglycan systems. Uciechowska-Kaczmarzyk U; Chauvot de Beauchene I; Samsonov SA J Mol Graph Model; 2019 Jul; 90():42-50. PubMed ID: 30959268 [TBL] [Abstract][Full Text] [Related]
14. Relative assessment of different statistical instruments and measures for the prediction of promising outcomes using docking, virtual screening and ADMET analysis against HIV-RT. Shamshad H; Saeed M; Ul-Haq Z; Halim SA; Gul S; Mirza AZ J Biomol Struct Dyn; 2022 Oct; 40(17):7680-7692. PubMed ID: 33779506 [TBL] [Abstract][Full Text] [Related]