These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22669299)

  • 1. Estimating the division rate for the growth-fragmentation equation.
    Doumic M; Tine LM
    J Math Biol; 2013 Jul; 67(1):69-103. PubMed ID: 22669299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the calibration of a size-structured population model from experimental data.
    Doumic M; Maia P; Zubelli JP
    Acta Biotheor; 2010 Dec; 58(4):405-13. PubMed ID: 20676731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation.
    Tournus M; Escobedo M; Xue WF; Doumic M
    PLoS Comput Biol; 2021 Sep; 17(9):e1008964. PubMed ID: 34478445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fencing problem and Coleochaete cell division.
    Wang Y; Dou M; Zhou Z
    J Math Biol; 2015 Mar; 70(4):893-912. PubMed ID: 24771212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete limit and monotonicity properties of the Floquet eigenvalue in an age structured cell division cycle model.
    Gaubert S; Lepoutre T
    J Math Biol; 2015 Dec; 71(6-7):1663-703. PubMed ID: 25814336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and numerical simulation of an inverse problem for a structured cell population dynamics model.
    Clément F; Laroche B; Robin F
    Math Biosci Eng; 2019 Apr; 16(4):3018-3046. PubMed ID: 31137249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the self-similar solution of fragmentation equation: Numerical evaluation with implications for the inverse problem.
    Kostoglou M; Karabelas AJ
    J Colloid Interface Sci; 2005 Apr; 284(2):571-81. PubMed ID: 15780296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Growth-Fragmentation Approach for Modeling Microtubule Dynamic Instability.
    Honoré S; Hubert F; Tournus M; White D
    Bull Math Biol; 2019 Mar; 81(3):722-758. PubMed ID: 30484040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-cell repulsion model on a hyperbolic Keller-Segel equation.
    Fu X; Griette Q; Magal P
    J Math Biol; 2020 Jun; 80(7):2257-2300. PubMed ID: 32328703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From short-range repulsion to Hele-Shaw problem in a model of tumor growth.
    Motsch S; Peurichard D
    J Math Biol; 2018 Jan; 76(1-2):205-234. PubMed ID: 28573465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling and numerical simulation of the mitotic spindle orientation system.
    Ibrahim B
    Math Biosci; 2018 Sep; 303():46-51. PubMed ID: 29792897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells.
    Sherley JL; Stadler PB; Stadler JS
    Cell Prolif; 1995 Mar; 28(3):137-44. PubMed ID: 7734623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain.
    Lee S
    Bull Math Biol; 2018 Mar; 80(3):583-597. PubMed ID: 29344759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical framework for computing steady states of structured population models and their stability.
    Mirzaev I; Bortz DM
    Math Biosci Eng; 2017 Aug; 14(4):933-952. PubMed ID: 28608703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate Change and Integrodifference Equations in a Stochastic Environment.
    Bouhours J; Lewis MA
    Bull Math Biol; 2016 Sep; 78(9):1866-1903. PubMed ID: 27647008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic population growth in spatially heterogeneous environments: the density-dependent case.
    Hening A; Nguyen DH; Yin G
    J Math Biol; 2018 Feb; 76(3):697-754. PubMed ID: 28674928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mathematical model of heterogeneous cell proliferation.
    Vittadello ST; McCue SW; Gunasingh G; Haass NK; Simpson MJ
    J Math Biol; 2021 Mar; 82(5):34. PubMed ID: 33712945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for asymmetrical cell division.
    Zaidi AA; Van Brunt B; Wake GC
    Math Biosci Eng; 2015 Jun; 12(3):491-501. PubMed ID: 25811550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spreading Speed in an Integrodifference Predator-Prey System without Comparison Principle.
    Lin G; Niu Y; Pan S; Ruan S
    Bull Math Biol; 2020 Apr; 82(5):53. PubMed ID: 32314098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical and computational approach for integrating the major sources of cell population heterogeneity.
    Stamatakis M; Zygourakis K
    J Theor Biol; 2010 Sep; 266(1):41-61. PubMed ID: 20685607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.