These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22669350)
1. Seasonal variation in myopia progression and axial elongation: an evaluation of Japanese children participating in a myopia control trial. Fujiwara M; Hasebe S; Nakanishi R; Tanigawa K; Ohtsuki H Jpn J Ophthalmol; 2012 Jul; 56(4):401-6. PubMed ID: 22669350 [TBL] [Abstract][Full Text] [Related]
2. Myopia progression in Chinese children is slower in summer than in winter. Donovan L; Sankaridurg P; Ho A; Chen X; Lin Z; Thomas V; Smith EL; Ge J; Holden B Optom Vis Sci; 2012 Aug; 89(8):1196-202. PubMed ID: 22797511 [TBL] [Abstract][Full Text] [Related]
3. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Gwiazda J; Deng L; Manny R; Norton TT; Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):752-8. PubMed ID: 24408976 [TBL] [Abstract][Full Text] [Related]
4. Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial. Hyman L; Gwiazda J; Hussein M; Norton TT; Wang Y; Marsh-Tootle W; Everett D Arch Ophthalmol; 2005 Jul; 123(7):977-87. PubMed ID: 16009841 [TBL] [Abstract][Full Text] [Related]
5. Interventions to slow progression of myopia in children. Walline JJ; Lindsley KB; Vedula SS; Cotter SA; Mutti DO; Ng SM; Twelker JD Cochrane Database Syst Rev; 2020 Jan; 1(1):CD004916. PubMed ID: 31930781 [TBL] [Abstract][Full Text] [Related]
6. Seasonal variation in myopia progression and ocular elongation. Fulk GW; Cyert LA; Parker DA Optom Vis Sci; 2002 Jan; 79(1):46-51. PubMed ID: 11828898 [TBL] [Abstract][Full Text] [Related]
8. Influence of overnight orthokeratology on axial elongation in childhood myopia. Kakita T; Hiraoka T; Oshika T Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2170-4. PubMed ID: 21212181 [TBL] [Abstract][Full Text] [Related]
9. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. Zhu MJ; Feng HY; He XG; Zou HD; Zhu JF BMC Ophthalmol; 2014 Nov; 14():141. PubMed ID: 25417926 [TBL] [Abstract][Full Text] [Related]
10. Effect of undercorrection on myopia progression in 12-year-old children. Li SY; Li SM; Zhou YH; Liu LR; Li H; Kang MT; Zhan SY; Wang N; Millodot M Graefes Arch Clin Exp Ophthalmol; 2015 Aug; 253(8):1363-8. PubMed ID: 26032395 [TBL] [Abstract][Full Text] [Related]
11. Role of parental myopia in the progression of myopia and its interaction with treatment in COMET children. Kurtz D; Hyman L; Gwiazda JE; Manny R; Dong LM; Wang Y; Scheiman M; Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):562-70. PubMed ID: 17251451 [TBL] [Abstract][Full Text] [Related]
12. Randomised clinical trial of extended depth of focus lenses for controlling myopia progression: Outcomes from SEED LVPEI Indian Myopia Study. Manoharan MK; Verkicharla PK Br J Ophthalmol; 2024 Aug; 108(9):1292-1298. PubMed ID: 38604622 [TBL] [Abstract][Full Text] [Related]
13. One-year myopia control efficacy of cylindrical annular refractive element spectacle lenses. Liu X; Wang P; Xie Z; Sun M; Chen M; Wang J; Huang J; Chen S; Chen Z; Wang Y; Li Y; Qu J; Mao X Acta Ophthalmol; 2023 Sep; 101(6):651-657. PubMed ID: 36779428 [TBL] [Abstract][Full Text] [Related]
14. Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Hasebe S; Jun J; Varnas SR Invest Ophthalmol Vis Sci; 2014 Sep; 55(11):7177-88. PubMed ID: 25270192 [TBL] [Abstract][Full Text] [Related]
15. Effect of uncorrection versus full correction on myopia progression in 12-year-old children. Sun YY; Li SM; Li SY; Kang MT; Liu LR; Meng B; Zhang FJ; Millodot M; Wang N Graefes Arch Clin Exp Ophthalmol; 2017 Jan; 255(1):189-195. PubMed ID: 27796670 [TBL] [Abstract][Full Text] [Related]
16. Effect of progressive addition lenses on myopia progression in Japanese children: a prospective, randomized, double-masked, crossover trial. Hasebe S; Ohtsuki H; Nonaka T; Nakatsuka C; Miyata M; Hamasaki I; Kimura S Invest Ophthalmol Vis Sci; 2008 Jul; 49(7):2781-9. PubMed ID: 18579755 [TBL] [Abstract][Full Text] [Related]
17. Baseline refractive and ocular component measures of children enrolled in the correction of myopia evaluation trial (COMET). Gwiazda J; Marsh-Tootle WL; Hyman L; Hussein M; Norton TT; Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):314-21. PubMed ID: 11818372 [TBL] [Abstract][Full Text] [Related]
18. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial. Kanda H; Oshika T; Hiraoka T; Hasebe S; Ohno-Matsui K; Ishiko S; Hieda O; Torii H; Varnas SR; Fujikado T Jpn J Ophthalmol; 2018 Sep; 62(5):537-543. PubMed ID: 30083910 [TBL] [Abstract][Full Text] [Related]
19. Effect of Orthokeratology on Axial Length Elongation in Anisomyopic Children. Zhang Y; Chen Y Optom Vis Sci; 2019 Jan; 96(1):43-47. PubMed ID: 30570595 [TBL] [Abstract][Full Text] [Related]
20. Full correction and Undercorrection of Myopia Evaluation Trial: design and baseline data of a randomized, controlled, double-blind trial. Li SM; Li SY; Liu LR; Guo JY; Chen W; Wang NL; Millodot M Clin Exp Ophthalmol; 2013; 41(4):329-38. PubMed ID: 23009037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]