These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22669447)

  • 21. The endogenous antiseptic N-chlorotaurine irreversibly inactivates Chlamydia pneumoniae and Chlamydia trachomatis.
    Bellmann-Weiler R; Maass V; Arnitz R; Weiss G; Maass M; Nagl M
    J Med Microbiol; 2018 Sep; 67(9):1410-1415. PubMed ID: 30074473
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic approaches to Chlamydia infections.
    Senn L; Hammerschlag MR; Greub G
    Expert Opin Pharmacother; 2005 Oct; 6(13):2281-90. PubMed ID: 16218888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone antibiotic, against Chlamydia trachomatis and Chlamydia pneumoniae.
    Chotikanatis K; Kohlhoff SA; Hammerschlag MR
    Antimicrob Agents Chemother; 2014; 58(3):1800-1. PubMed ID: 24366753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of Chlamydia trachomatis Growth During the Last Decade: A Mini-Review.
    Serradji N; Vu TH; Kim H; Panyam J; Verbeke P
    Mini Rev Med Chem; 2018; 18(16):1363-1372. PubMed ID: 29692244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipopolysaccharide-binding alkylpolyamine DS-96 inhibits Chlamydia trachomatis infection by blocking attachment and entry.
    Osaka I; Hefty PS
    Antimicrob Agents Chemother; 2014 Jun; 58(6):3245-54. PubMed ID: 24663021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, synthesis and evaluation of novel polypharmacological antichlamydial agents.
    Sunduru N; Salin O; Gylfe Å; Elofsson M
    Eur J Med Chem; 2015 Aug; 101():595-603. PubMed ID: 26204507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae.
    Gieffers J; Rupp J; Gebert A; Solbach W; Klinger M
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1402-5. PubMed ID: 15047553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of clinically relevant culture conditions on antimicrobial susceptibility of Chlamydia trachomatis.
    Wyrick PB; Davis CH; Raulston JE; Knight ST; Choong J
    Clin Infect Dis; 1994 Nov; 19(5):931-6. PubMed ID: 7893882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of in vitro chlamydial cultures in low-oxygen atmospheres.
    Juul N; Jensen H; Hvid M; Christiansen G; Birkelund S
    J Bacteriol; 2007 Sep; 189(18):6723-6. PubMed ID: 17631631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis.
    Zhou Y; Lu X; Huang D; Lu Y; Zhang H; Zhang L; Yu P; Wang F; Wang Y
    Biochem Biophys Res Commun; 2019 Aug; 516(1):157-162. PubMed ID: 31202460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial Resistance Screening in Chlamydia trachomatis by Optimized McCoy Cell Culture System and Direct qPCR-Based Monitoring of Chlamydial Growth.
    Meštrović T; Virok DP; Ljubin-Sternak S; Raffai T; Burián K; Vraneš J
    Methods Mol Biol; 2019; 2042():33-43. PubMed ID: 31385269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle.
    Wolf K; Betts HJ; Chellas-Géry B; Hower S; Linton CN; Fields KA
    Mol Microbiol; 2006 Sep; 61(6):1543-55. PubMed ID: 16968227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of antiseptics on Chlamydia trachomatis growth.
    Párducz L; Eszik I; Wagner G; Burián K; Endrész V; Virok DP
    Lett Appl Microbiol; 2016 Oct; 63(4):260-7. PubMed ID: 27472980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlamydia pneumoniae resists antibiotics in lymphocytes.
    Yamaguchi H; Friedman H; Yamamoto M; Yasuda K; Yamamoto Y
    Antimicrob Agents Chemother; 2003 Jun; 47(6):1972-5. PubMed ID: 12760877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential for antimicrobial resistance in Chlamydia pneumoniae.
    Stamm WE
    J Infect Dis; 2000 Jun; 181 Suppl 3():S456-9. PubMed ID: 10839739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth cycle-dependent pharmacodynamics of antichlamydial drugs.
    Siewert K; Rupp J; Klinger M; Solbach W; Gieffers J
    Antimicrob Agents Chemother; 2005 May; 49(5):1852-6. PubMed ID: 15855506
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Kohlhoff S; Huerta N; Hammerschlag MR
    Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31160287
    [No Abstract]   [Full Text] [Related]  

  • 38. Relevance of Chlamydia pneumoniae murine pneumonitis model to evaluation of antimicrobial agents.
    Masson ND; Toseland CD; Beale AS
    Antimicrob Agents Chemother; 1995 Sep; 39(9):1959-64. PubMed ID: 8540698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic effect of ultrasound and antibiotics against Chlamydia trachomatis-infected human epithelial cells in vitro.
    Ikeda-Dantsuji Y; Feril LB; Tachibana K; Ogawa K; Endo H; Harada Y; Suzuki R; Maruyama K
    Ultrason Sonochem; 2011 Jan; 18(1):425-30. PubMed ID: 20728399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How useful is the Chlamydia micro-immunofluorescence (MIF) test for the gynaecologist?
    Wagenvoort JH; Koumans D; van de Cruijs M
    Eur J Obstet Gynecol Reprod Biol; 1999 May; 84(1):13-5. PubMed ID: 10413220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.