These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 22669515)
41. Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: a comparison of serum to lung lining fluid and albumin dispersions. Brown DM; Johnston H; Gubbins E; Stone V J Appl Toxicol; 2014 Nov; 34(11):1177-87. PubMed ID: 24737200 [TBL] [Abstract][Full Text] [Related]
43. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Singh S; Shi T; Duffin R; Albrecht C; van Berlo D; Höhr D; Fubini B; Martra G; Fenoglio I; Borm PJ; Schins RP Toxicol Appl Pharmacol; 2007 Jul; 222(2):141-51. PubMed ID: 17599375 [TBL] [Abstract][Full Text] [Related]
44. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs. Morris AS; Adamcakova-Dodd A; Lehman SE; Wongrakpanich A; Thorne PS; Larsen SC; Salem AK Toxicol Lett; 2016 Jan; 241():207-15. PubMed ID: 26562768 [TBL] [Abstract][Full Text] [Related]
45. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. Langston Suen WL; Chau Y J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558 [TBL] [Abstract][Full Text] [Related]
46. Side-specific effects by cadmium exposure: apical and basolateral treatment in a coculture model of the blood-air barrier. Papritz M; Pohl C; Wübbeke C; Moisch M; Hofmann H; Hermanns MI; Thiermann H; Kirkpatrick CJ; Kehe K Toxicol Appl Pharmacol; 2010 Jun; 245(3):361-9. PubMed ID: 20399800 [TBL] [Abstract][Full Text] [Related]
47. In vitro toxicity of silica nanoparticles in human lung cancer cells. Lin W; Huang YW; Zhou XD; Ma Y Toxicol Appl Pharmacol; 2006 Dec; 217(3):252-9. PubMed ID: 17112558 [TBL] [Abstract][Full Text] [Related]
49. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Armstead AL; Arena CB; Li B Toxicol Appl Pharmacol; 2014 Jul; 278(1):1-8. PubMed ID: 24746988 [TBL] [Abstract][Full Text] [Related]
50. Role of size and surface area for pro-inflammatory responses to silica nanoparticles in epithelial lung cells: importance of exposure conditions. Skuland T; Ovrevik J; Låg M; Refsnes M Toxicol In Vitro; 2014 Mar; 28(2):146-55. PubMed ID: 24211531 [TBL] [Abstract][Full Text] [Related]
51. Is aggregated synthetic amorphous silica toxicologically relevant? Murugadoss S; van den Brule S; Brassinne F; Sebaihi N; Mejia J; Lucas S; Petry J; Godderis L; Mast J; Lison D; Hoet PH Part Fibre Toxicol; 2020 Jan; 17(1):1. PubMed ID: 31900181 [TBL] [Abstract][Full Text] [Related]
52. The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells. Park JH; Jeong H; Hong J; Chang M; Kim M; Chuck RS; Lee JK; Park CY Sci Rep; 2016 Nov; 6():37762. PubMed ID: 27876873 [TBL] [Abstract][Full Text] [Related]
53. Genotoxicity of amorphous silica particles with different structure and dimension in human and murine cell lines. Guidi P; Nigro M; Bernardeschi M; Scarcelli V; Lucchesi P; Onida B; Mortera R; Frenzilli G Mutagenesis; 2013 Mar; 28(2):171-80. PubMed ID: 23325795 [TBL] [Abstract][Full Text] [Related]
54. Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Panas A; Marquardt C; Nalcaci O; Bockhorn H; Baumann W; Paur HR; Mülhopt S; Diabaté S; Weiss C Nanotoxicology; 2013 May; 7(3):259-73. PubMed ID: 22276741 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells. Yang YX; Song ZM; Cheng B; Xiang K; Chen XX; Liu JH; Cao A; Wang Y; Liu Y; Wang H J Appl Toxicol; 2014 Apr; 34(4):424-35. PubMed ID: 24302550 [TBL] [Abstract][Full Text] [Related]
57. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting. John BA; Meister M; Banning A; Tikkanen R FEBS J; 2014 Apr; 281(8):2074-87. PubMed ID: 24612608 [TBL] [Abstract][Full Text] [Related]
58. Is the toxic potential of nanosilver dependent on its size? Huk A; Izak-Nau E; Reidy B; Boyles M; Duschl A; Lynch I; Dušinska M Part Fibre Toxicol; 2014 Dec; 11():65. PubMed ID: 25466209 [TBL] [Abstract][Full Text] [Related]
59. In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Freese C; Schreiner D; Anspach L; Bantz C; Maskos M; Unger RE; Kirkpatrick CJ Part Fibre Toxicol; 2014 Dec; 11():68. PubMed ID: 25539809 [TBL] [Abstract][Full Text] [Related]
60. Size and surface modification of silica nanoparticles affect the severity of lung toxicity by modulating endosomal ROS generation in macrophages. Inoue M; Sakamoto K; Suzuki A; Nakai S; Ando A; Shiraki Y; Nakahara Y; Omura M; Enomoto A; Nakase I; Sawada M; Hashimoto N Part Fibre Toxicol; 2021 Jun; 18(1):21. PubMed ID: 34134732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]