BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 2267135)

  • 1. Cell cycle control by p53 in normal (3T3) and chemically transformed (Meth A) mouse cells. I. Regulation of p53 expression.
    Steinmeyer K; Maacke H; Deppert W
    Oncogene; 1990 Nov; 5(11):1691-9. PubMed ID: 2267135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle control of p53 in normal (3T3) and chemically transformed (Meth A) mouse cells. II. Requirement for cell cycle progression.
    Deppert W; Buschhausen-Denker G; Patschinsky T; Steinmeyer K
    Oncogene; 1990 Nov; 5(11):1701-6. PubMed ID: 2267136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle dependent effects of u.v.-radiation on p53 expression and retinoblastoma protein phosphorylation.
    Haapajärvi T; Kivinen L; Pitkänen K; Laiho M
    Oncogene; 1995 Jul; 11(1):151-9. PubMed ID: 7624123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of apoptosis and cell cycle-specific change in expression of p53 in normal lymphocytes and MOLT-4 leukemic cells by nitrogen mustard.
    Bhatia U; Danishefsky K; Traganos F; Darzynkiewicz Z
    Clin Cancer Res; 1995 Aug; 1(8):873-80. PubMed ID: 9816057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent regulation of nuclear p53 traffic occurs in one subclass of human tumor cells and in untransformed cells.
    David-Pfeuty T; Chakrani F; Ory K; Nouvian-Dooghe Y
    Cell Growth Differ; 1996 Sep; 7(9):1211-25. PubMed ID: 8877102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein.
    Wesierska-Gadek J; Schmid G
    Cell Mol Biol Lett; 2001; 6(2):117-40. PubMed ID: 11544635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle variation in 125I-labeled epidermal growth factor binding in chemically transformed cells.
    Robinson RA; Branum EL; Volkenant ME; Moses HL
    Cancer Res; 1982 Jul; 42(7):2633-8. PubMed ID: 6979383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control.
    Willers H; McCarthy EE; Wu B; Wunsch H; Tang W; Taghian DG; Xia F; Powell SN
    Oncogene; 2000 Feb; 19(5):632-9. PubMed ID: 10698508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations.
    Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA
    Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle-dependent gene expression in V point-arrested BALB/c-3T3 cells.
    Olson JE; Winston JT; Whitlock JA; Pledger WJ
    J Cell Physiol; 1993 Feb; 154(2):333-42. PubMed ID: 8425914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinoic acid-mediated G1-S-phase arrest of normal human mammary epithelial cells is independent of the level of p53 protein expression.
    Seewaldt VL; Dietze EC; Johnson BS; Collins SJ; Parker MB
    Cell Growth Differ; 1999 Jan; 10(1):49-59. PubMed ID: 9950218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells.
    Chen HW; Huang HC
    Br J Pharmacol; 1998 Jul; 124(6):1029-40. PubMed ID: 9720770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin.
    Huang S; Liu LN; Hosoi H; Dilling MB; Shikata T; Houghton PJ
    Cancer Res; 2001 Apr; 61(8):3373-81. PubMed ID: 11309295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells.
    Shaulsky G; Ben-Ze'ev A; Rotter V
    Oncogene; 1990 Nov; 5(11):1707-11. PubMed ID: 2267137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype.
    Kramer DL; Chang BD; Chen Y; Diegelman P; Alm K; Black AR; Roninson IB; Porter CW
    Cancer Res; 2001 Nov; 61(21):7754-62. PubMed ID: 11691789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor.
    Enebo DJ; Fattaey HK; Moos PJ; Johnson TC
    J Cell Biochem; 1994 Jun; 55(2):200-8. PubMed ID: 8089195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status.
    Syljuåsen RG; Krolewski B; Little JB
    Cancer Res; 1999 Mar; 59(5):1008-14. PubMed ID: 10070956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage.
    Kurdistani SK; Arizti P; Reimer CL; Sugrue MM; Aaronson SA; Lee SW
    Cancer Res; 1998 Oct; 58(19):4439-44. PubMed ID: 9766676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53.
    Komarova EA; Diatchenko L; Rokhlin OW; Hill JE; Wang ZJ; Krivokrysenko VI; Feinstein E; Gudkov AV
    Oncogene; 1998 Sep; 17(9):1089-96. PubMed ID: 9764819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines.
    Li CY; Nagasawa H; Dahlberg WK; Little JB
    Oncogene; 1995 Nov; 11(9):1885-92. PubMed ID: 7478618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.