BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2267136)

  • 1. Cell cycle control of p53 in normal (3T3) and chemically transformed (Meth A) mouse cells. II. Requirement for cell cycle progression.
    Deppert W; Buschhausen-Denker G; Patschinsky T; Steinmeyer K
    Oncogene; 1990 Nov; 5(11):1701-6. PubMed ID: 2267136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle control by p53 in normal (3T3) and chemically transformed (Meth A) mouse cells. I. Regulation of p53 expression.
    Steinmeyer K; Maacke H; Deppert W
    Oncogene; 1990 Nov; 5(11):1691-9. PubMed ID: 2267135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control.
    Willers H; McCarthy EE; Wu B; Wunsch H; Tang W; Taghian DG; Xia F; Powell SN
    Oncogene; 2000 Feb; 19(5):632-9. PubMed ID: 10698508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle dependent effects of u.v.-radiation on p53 expression and retinoblastoma protein phosphorylation.
    Haapajärvi T; Kivinen L; Pitkänen K; Laiho M
    Oncogene; 1995 Jul; 11(1):151-9. PubMed ID: 7624123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells.
    Shaulsky G; Ben-Ze'ev A; Rotter V
    Oncogene; 1990 Nov; 5(11):1707-11. PubMed ID: 2267137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of apoptosis and cell cycle-specific change in expression of p53 in normal lymphocytes and MOLT-4 leukemic cells by nitrogen mustard.
    Bhatia U; Danishefsky K; Traganos F; Darzynkiewicz Z
    Clin Cancer Res; 1995 Aug; 1(8):873-80. PubMed ID: 9816057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle-dependent regulation of nuclear p53 traffic occurs in one subclass of human tumor cells and in untransformed cells.
    David-Pfeuty T; Chakrani F; Ory K; Nouvian-Dooghe Y
    Cell Growth Differ; 1996 Sep; 7(9):1211-25. PubMed ID: 8877102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor.
    Enebo DJ; Fattaey HK; Moos PJ; Johnson TC
    J Cell Biochem; 1994 Jun; 55(2):200-8. PubMed ID: 8089195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin.
    Huang S; Liu LN; Hosoi H; Dilling MB; Shikata T; Houghton PJ
    Cancer Res; 2001 Apr; 61(8):3373-81. PubMed ID: 11309295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status.
    Syljuåsen RG; Krolewski B; Little JB
    Cancer Res; 1999 Mar; 59(5):1008-14. PubMed ID: 10070956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat shock induces transient p53-dependent cell cycle arrest at G1/S.
    Nitta M; Okamura H; Aizawa S; Yamaizumi M
    Oncogene; 1997 Jul; 15(5):561-8. PubMed ID: 9247309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular localization of p53 tumor suppressor protein in gamma-irradiated cells is cell cycle regulated and determined by the nucleus.
    Komarova EA; Zelnick CR; Chin D; Zeremski M; Gleiberman AS; Bacus SS; Gudkov AV
    Cancer Res; 1997 Dec; 57(23):5217-20. PubMed ID: 9393737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of novel tumour-derived p53 mutations on the transformation of NIH-3T3 cells.
    Donninger H; Binder A; Bohm L; Parker MI
    Biol Chem; 2008 Jan; 389(1):57-67. PubMed ID: 18095870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53-mediated accumulation of hypophosphorylated pRb after the G1 restriction point fails to halt cell cycle progression.
    Linke SP; Harris MP; Neugebauer SE; Clarkin KC; Shepard HM; Maneval DC; Wahl GM
    Oncogene; 1997 Jul; 15(3):337-45. PubMed ID: 9233768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addition of fresh medium induces cell cycle and conformation changes in p53, a tumour suppressor protein.
    Milner J; Watson JV
    Oncogene; 1990 Nov; 5(11):1683-90. PubMed ID: 2176282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression.
    Fiscella M; Ullrich SJ; Zambrano N; Shields MT; Lin D; Lees-Miller SP; Anderson CW; Mercer WE; Appella E
    Oncogene; 1993 Jun; 8(6):1519-28. PubMed ID: 8502477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wild-type p53 and a p53 temperature-sensitive mutant suppress human soft tissue sarcoma by enhancing cell cycle control.
    Pollock R; Lang A; Ge T; Sun D; Tan M; Yu D
    Clin Cancer Res; 1998 Aug; 4(8):1985-94. PubMed ID: 9717829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress.
    Amellem O; Stokke T; Sandvik JA; Pettersen EO
    Exp Cell Res; 1996 Aug; 227(1):106-15. PubMed ID: 8806457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-cycle deregulation in BALB/c 3T3 cells transformed by 1,2-dibromoethane and folpet pesticides.
    Santucci MA; Mercatali L; Brusa G; Pattacini L; Barbieri E; Perocco P
    Environ Mol Mutagen; 2003; 41(5):315-21. PubMed ID: 12802801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminished capacity for p53 in mediating a radiation-induced G1 arrest in established human tumor cell lines.
    Li CY; Nagasawa H; Dahlberg WK; Little JB
    Oncogene; 1995 Nov; 11(9):1885-92. PubMed ID: 7478618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.