These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22671442)

  • 1. Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell death.
    Llabrés M; Dachs J; Agustí S
    Photochem Photobiol; 2012; 88(6):1473-9. PubMed ID: 22671442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton.
    Echeveste P; Galbán-Malagón C; Dachs J; Berrojalbiz N; Agustí S
    Sci Total Environ; 2016 Nov; 571():34-41. PubMed ID: 27470667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.
    Doney SC; Mahowald N; Lima I; Feely RA; Mackenzie FT; Lamarque JF; Rasch PJ
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14580-5. PubMed ID: 17804807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "degradative" and "biological" pumps controls on the atmospheric deposition and sequestration of hexachlorocyclohexanes and hexachlorobenzene in the North Atlantic and Arctic Oceans.
    Galbán-Malagón CJ; Berrojalbiz N; Gioia R; Dachs J
    Environ Sci Technol; 2013 Jul; 47(13):7195-203. PubMed ID: 23710798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.
    Martinez E; Antoine D; D'Ortenzio F; Gentili B
    Science; 2009 Nov; 326(5957):1253-6. PubMed ID: 19965473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters.
    Arakaki T; Anastasio C; Kuroki Y; Nakajima H; Okada K; Kotani Y; Handa D; Azechi S; Kimura T; Tsuhako A; Miyagi Y
    Environ Sci Technol; 2013 Aug; 47(15):8196-203. PubMed ID: 23822860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxic thresholds of cadmium and lead to oceanic phytoplankton: cell size and ocean basin-dependent effects.
    Echeveste P; Agustí S; Tovar-Sánchez A
    Environ Toxicol Chem; 2012 Aug; 31(8):1887-94. PubMed ID: 22619131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototransformation processes of 2,4-dinitrophenol, relevant to atmospheric water droplets.
    Albinet A; Minero C; Vione D
    Chemosphere; 2010 Aug; 80(7):753-8. PubMed ID: 20538316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decrease in the abundance and viability of oceanic phytoplankton due to trace levels of complex mixtures of organic pollutants.
    Echeveste P; Dachs J; Berrojalbiz N; Agustí S
    Chemosphere; 2010 Sep; 81(2):161-8. PubMed ID: 20673958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean.
    Chaulk A; Stern GA; Armstrong D; Barber DG; Wang F
    Environ Sci Technol; 2011 Mar; 45(5):1866-72. PubMed ID: 21288021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brominated flame retardants in seawater and atmosphere of the Atlantic and the Southern Ocean.
    Xie Z; Möller A; Ahrens L; Sturm R; Ebinghaus R
    Environ Sci Technol; 2011 Mar; 45(5):1820-6. PubMed ID: 21291232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical study on the seasonal variability of polychlorinated biphenyls from the atmosphere in the East China Sea.
    Ono J; Takahashi D; Guo X; Takahashi S; Takeoka H
    Chemosphere; 2012 Oct; 89(4):389-97. PubMed ID: 22748217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic.
    Galbán-Malagón C; Berrojalbiz N; Ojeda MJ; Dachs J
    Nat Commun; 2012 May; 3():862. PubMed ID: 22643889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2.
    Maher BA; Dennis PF
    Nature; 2001 May; 411(6834):176-80. PubMed ID: 11346790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric photosensitized heterogeneous and multiphase reactions: from outdoors to indoors.
    Gómez Alvarez E; Wortham H; Strekowski R; Zetzsch C; Gligorovski S
    Environ Sci Technol; 2012 Feb; 46(4):1955-63. PubMed ID: 22148293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical atlantic air: implications for atmospheric OVOC budgets and oxidative capacity.
    Read KA; Carpenter LJ; Arnold SR; Beale R; Nightingale PD; Hopkins JR; Lewis AC; Lee JD; Mendes L; Pickering SJ
    Environ Sci Technol; 2012 Oct; 46(20):11028-39. PubMed ID: 22963451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean.
    Bates NR; Pequignet AC; Johnson RJ; Gruber N
    Nature; 2002 Dec; 420(6915):489-93. PubMed ID: 12487116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton.
    Echeveste P; Agustí S; Dachs J
    Environ Pollut; 2011 May; 159(5):1307-16. PubMed ID: 21330023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
    Watson AJ; Bakker DC; Ridgwell AJ; Boyd PW; Law CS
    Nature; 2000 Oct; 407(6805):730-3. PubMed ID: 11048716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.