BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22671997)

  • 1. The p53-Bak apoptotic signaling axis plays an essential role in regulating differentiation of the ocular lens.
    Deng M; Chen P; Liu F; Fu S; Tang H; Fu Y; Xiong Z; Hui S; Ji W; Zhang X; Zhang L; Gong L; Hu X; Hu W; Sun S; Liu J; Xiao L; Liu WB; Xiao YM; Liu SJ; Liu Y; Li DW
    Curr Mol Med; 2012 Sep; 12(8):901-16. PubMed ID: 22671997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation.
    Tang X; Chen Z; Deng M; Wang L; Nie Q; Xiang JW; Xiao Y; Yang L; Liu Y; Li DW
    Curr Mol Med; 2018; 18(8):556-565. PubMed ID: 30636605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tumor suppressor p53 regulates c-Maf and Prox-1 to control lens differentiation.
    Liu FY; Tang XC; Deng M; Chen P; Ji W; Zhang X; Gong L; Woodward Z; Liu J; Zhang L; Sun S; Liu JP; Wu K; Wu MX; Liu XL; Yu MB; Liu Y; Li DW
    Curr Mol Med; 2012 Sep; 12(8):917-28. PubMed ID: 22827438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway.
    Qin J; Chen HG; Yan Q; Deng M; Liu J; Doerge S; Ma W; Dong Z; Li DW
    Cancer Res; 2008 Jun; 68(11):4150-62. PubMed ID: 18519674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p53 directly regulates αA- and βA3/A1-crystallin genes to modulate lens differentiation.
    Ji WK; Tang XC; Yi M; Chen PQ; Liu FY; Hu XH; Hu WF; Fu SJ; Liu JF; Wu KL; Wu MX; Liu XL; Luo LX; Huang S; Liu ZZ; Yu MB; Liu YZ; Li DW
    Curr Mol Med; 2013 Jul; 13(6):968-78. PubMed ID: 23745585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p14(ARF)-induced apoptosis in p53 protein-deficient cells is mediated by BH3-only protein-independent derepression of Bak protein through down-regulation of Mcl-1 and Bcl-xL proteins.
    Müer A; Overkamp T; Gillissen B; Richter A; Pretzsch T; Milojkovic A; Dörken B; Daniel PT; Hemmati P
    J Biol Chem; 2012 May; 287(21):17343-17352. PubMed ID: 22354970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tumor suppressor, p53 regulates the γA-crystallin gene during mouse lens development.
    Hu XH; Nie Q; Yi M; Li TT; Wang ZF; Huang ZX; Gong XD; Zhou L; Ji WK; Hu WF; Liu JF; Wang L; Woodward Z; Zhu J; Liu WB; Nguyen QD; Li DW
    Curr Mol Med; 2014; 14(9):1197-204. PubMed ID: 25336329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bax/Bak activation in the absence of Bid, Bim, Puma, and p53.
    Zhang J; Huang K; O'Neill KL; Pang X; Luo X
    Cell Death Dis; 2016 Jun; 7(6):e2266. PubMed ID: 27310874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. E2F1 mediates ectopic proliferation and stage-specific p53-dependent apoptosis but not aberrant differentiation in the ocular lens of Rb deficient fetuses.
    Liu Y; Zacksenhaus E
    Oncogene; 2000 Dec; 19(52):6065-73. PubMed ID: 11146559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis.
    Mondal S; Bhattacharya K; Mallick A; Sangwan R; Mandal C
    PLoS One; 2012; 7(3):e34277. PubMed ID: 22479585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of the proapoptotic multidomain protein Bak by p53 and p73 at the promoter level.
    Graupner V; Alexander E; Overkamp T; Rothfuss O; De Laurenzi V; Gillissen BF; Daniel PT; Schulze-Osthoff K; Essmann F
    Cell Death Differ; 2011 Jul; 18(7):1130-9. PubMed ID: 21233848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation.
    Dawes LJ; Shelley EJ; McAvoy JW; Lovicu FJ
    Exp Eye Res; 2018 Apr; 169():122-133. PubMed ID: 29355736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic IGFBP1 is a prosurvival factor that binds to BAK, protects the liver from apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria.
    Leu JI; George DL
    Genes Dev; 2007 Dec; 21(23):3095-109. PubMed ID: 18056423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities.
    Li DW; Liu JP; Schmid PC; Schlosser R; Feng H; Liu WB; Yan Q; Gong L; Sun SM; Deng M; Liu Y
    Oncogene; 2006 May; 25(21):3006-22. PubMed ID: 16501611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putting the brakes on p53-driven apoptosis.
    Höpker K; Hagmann H; Khurshid S; Chen S; Schermer B; Benzing T; Reinhardt HC
    Cell Cycle; 2012 Nov; 11(22):4122-8. PubMed ID: 22983126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial p53 Contributes to Reovirus-Induced Neuronal Apoptosis and Central Nervous System Injury in a Mouse Model of Viral Encephalitis.
    Zhuang Y; Berens-Norman HM; Leser JS; Clarke P; Tyler KL
    J Virol; 2016 Sep; 90(17):7684-91. PubMed ID: 27307572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tetramerization domain of p53 is required for efficient BAK oligomerization.
    Pietsch EC; Leu JI; Frank A; Dumont P; George DL; Murphy ME
    Cancer Biol Ther; 2007 Oct; 6(10):1576-83. PubMed ID: 17895645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial p53 phosphorylation induces Bak-mediated and caspase-independent cell death.
    Wang J; Guo W; Zhou H; Luo N; Nie C; Zhao X; Yuan Z; Liu X; Wei Y
    Oncotarget; 2015 Jul; 6(19):17192-205. PubMed ID: 25980443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships of P53 and Bak with EPO and EPOR in human colorectal cancer.
    Baltaziak M; Koda M; Wincewicz A; Sulkowska M; Kanczuga-Koda L; Sulkowski S
    Anticancer Res; 2009 Oct; 29(10):4151-6. PubMed ID: 19846965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoptosis gene profiling reveals spatio-temporal regulated expression of the p53/Mdm2 pathway during lens development.
    Geatrell JC; Gan PM; Mansergh FC; Kisiswa L; Jarrin M; Williams LA; Evans MJ; Boulton ME; Wride MA
    Exp Eye Res; 2009 Jun; 88(6):1137-51. PubMed ID: 19450442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.