These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22672153)

  • 1. Targeted inactivation of transcription factors by overexpression of their truncated forms in plants.
    Seo PJ; Hong SY; Ryu JY; Jeong EY; Kim SG; Baldwin IT; Park CM
    Plant J; 2012 Oct; 72(1):162-72. PubMed ID: 22672153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MADS-box protein complexes control carpel and ovule development in Arabidopsis.
    Favaro R; Pinyopich A; Battaglia R; Kooiker M; Borghi L; Ditta G; Yanofsky MF; Kater MM; Colombo L
    Plant Cell; 2003 Nov; 15(11):2603-11. PubMed ID: 14555696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice.
    Mitsuda N; Hiratsu K; Todaka D; Nakashima K; Yamaguchi-Shinozaki K; Ohme-Takagi M
    Plant Biotechnol J; 2006 May; 4(3):325-32. PubMed ID: 17147638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
    Sridhar VV; Surendrarao A; Liu Z
    Development; 2006 Aug; 133(16):3159-66. PubMed ID: 16854969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA
    J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis.
    Jang S; Torti S; Coupland G
    Plant J; 2009 Nov; 60(4):614-25. PubMed ID: 19656342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy.
    Lee J; Oh M; Park H; Lee I
    Plant J; 2008 Sep; 55(5):832-43. PubMed ID: 18466303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant science. The right time and place for making flowers.
    Blázquez MA
    Science; 2005 Aug; 309(5737):1024-5. PubMed ID: 16099968
    [No Abstract]   [Full Text] [Related]  

  • 11. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6.
    Koo SC; Bracko O; Park MS; Schwab R; Chun HJ; Park KM; Seo JS; Grbic V; Balasubramanian S; Schmid M; Godard F; Yun DJ; Lee SY; Cho MJ; Weigel D; Kim MC
    Plant J; 2010 Jun; 62(5):807-16. PubMed ID: 20230491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC.
    Buzas DM; Robertson M; Finnegan EJ; Helliwell CA
    Plant J; 2011 Mar; 65(6):872-81. PubMed ID: 21276103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Urbanus SL; Martinelli AP; Dinh QD; Aizza LC; Dornelas MC; Angenent GC; Immink RG
    Plant J; 2010 Jul; 63(1):60-72. PubMed ID: 20374529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of spatial and temporal information during floral induction in Arabidopsis.
    Wigge PA; Kim MC; Jaeger KE; Busch W; Schmid M; Lohmann JU; Weigel D
    Science; 2005 Aug; 309(5737):1056-9. PubMed ID: 16099980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.
    Ding L; Wang Y; Yu H
    Plant Cell Physiol; 2013 Apr; 54(4):595-608. PubMed ID: 23396600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba.
    D'Aloia M; Tamseddak K; Bonhomme D; Bonhomme F; Bernier G; Périlleux C
    Plant J; 2009 Sep; 59(6):962-73. PubMed ID: 19473326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene duplication and the evolution of plant MADS-box transcription factors.
    Airoldi CA; Davies B
    J Genet Genomics; 2012 Apr; 39(4):157-65. PubMed ID: 22546537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis.
    Brambilla V; Battaglia R; Colombo M; Masiero S; Bencivenga S; Kater MM; Colombo L
    Plant Cell; 2007 Aug; 19(8):2544-56. PubMed ID: 17693535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors.
    Lee JH; Ryu HS; Chung KS; Posé D; Kim S; Schmid M; Ahn JH
    Science; 2013 Nov; 342(6158):628-32. PubMed ID: 24030492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.
    Ciannamea S; Kaufmann K; Frau M; Tonaco IA; Petersen K; Nielsen KK; Angenent GC; Immink RG
    J Exp Bot; 2006; 57(13):3419-31. PubMed ID: 17005923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.