These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1032 related articles for article (PubMed ID: 22672649)

  • 21. Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants.
    Peňázová E; Dvořák M; Ragasová L; Kiss T; Pečenka J; Čechová J; Eichmeier A
    PLoS One; 2020; 15(1):e0227559. PubMed ID: 31910230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses.
    Oliveras À; Camó C; Caravaca-Fuentes P; Moll L; Riesco-Llach G; Gil-Caballero S; Badosa E; Bonaterra A; Montesinos E; Feliu L; Planas M
    Appl Environ Microbiol; 2022 Jun; 88(12):e0057422. PubMed ID: 35638842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology.
    Pfeilmeier S; Caly DL; Malone JG
    Mol Plant Pathol; 2016 Oct; 17(8):1298-313. PubMed ID: 27170435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinguishing bacterial pathogens of potato using a genome-wide microarray approach.
    Aittamaa M; Somervuo P; Pirhonen M; Mattinen L; Nissinen R; Auvinen P; Valkonen JP
    Mol Plant Pathol; 2008 Sep; 9(5):705-17. PubMed ID: 19018999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudozyma aphidis Induces Salicylic-Acid-Independent Resistance to Clavibacter michiganensis in Tomato Plants.
    Barda O; Shalev O; Alster S; Buxdorf K; Gafni A; Levy M
    Plant Dis; 2015 May; 99(5):621-626. PubMed ID: 30699688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bactericides Based on Copper Nanoparticles Restrain Growth of Important Plant Pathogens.
    Varympopi A; Dimopoulou A; Theologidis I; Karamanidou T; Kaldeli Kerou A; Vlachou A; Karfaridis D; Papafotis D; Hatzinikolaou DG; Tsouknidas A; Skandalis N
    Pathogens; 2020 Dec; 9(12):. PubMed ID: 33291381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simplified subtractive hybridization protocol used to isolate DNA sequences specific to Xylella fastidiosa.
    Ferreira H; Neto JR; Gonçalves ER; Rosato YB
    Microbiology (Reading); 1999 Aug; 145 ( Pt 8)():1967-1975. PubMed ID: 10463163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism.
    Srinivasa C; Sharanaiah U; Shivamallu C
    Acta Biochim Biophys Sin (Shanghai); 2012 Mar; 44(3):217-23. PubMed ID: 22291005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria.
    Gough CL; Genin S; Zischek C; Boucher CA
    Mol Plant Microbe Interact; 1992; 5(5):384-9. PubMed ID: 1472716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid eradication of bacterial phytopathogens by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode.
    Motyka A; Dzimitrowicz A; Jamroz P; Lojkowska E; Sledz W; Pohl P
    Biotechnol Bioeng; 2018 Jun; 115(6):1581-1593. PubMed ID: 29457632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice.
    Patil PB; Sonti RV
    BMC Microbiol; 2004 Oct; 4():40. PubMed ID: 15473911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus.
    Van den Mooter M; Swings J
    Int J Syst Bacteriol; 1990 Oct; 40(4):348-69. PubMed ID: 2275852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus.
    Hao G; Zhang S; Stover E
    PLoS One; 2017; 12(10):e0186810. PubMed ID: 29049366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of plant pathogens from different hosts and tissues by capillary electromigration techniques.
    Horká M; Horký J; Matousková H; Slais K
    Anal Chem; 2007 Dec; 79(24):9539-46. PubMed ID: 17997525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antibacterial activities of the phytochemicals-characterized extracts of Callistemon viminalis, Eucalyptus camaldulensis and Conyza dioscoridis against the growth of some phytopathogenic bacteria.
    El-Hefny M; Ashmawy NA; Salem MZM; Salem AZM
    Microb Pathog; 2017 Dec; 113():348-356. PubMed ID: 29126952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzyme-linked immunosorbent assay for the detection and identification of plant pathogenic bacteria (in particular for Erwinia amylovora and Clavibacter michiganensis subsp. sepedonicus).
    Kokoskova B; Janse JD
    Methods Mol Biol; 2009; 508():75-87. PubMed ID: 19301748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers.
    Patil PB; Bogdanove AJ; Sonti RV
    BMC Evol Biol; 2007 Dec; 7():243. PubMed ID: 18053269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nano-metals forming bacteria in Egypt. I. Synthesis, characterization and effect on some phytopathogenic bacteria in vitro.
    Zaki SAE; Kamal A; Ashmawy NA; Shoeib AA
    Sci Rep; 2021 Jun; 11(1):12876. PubMed ID: 34145331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens.
    Rossier O; Wengelnik K; Hahn K; Bonas U
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9368-73. PubMed ID: 10430949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR.
    Nikitin MM; Statsyuk NV; Frantsuzov PA; Dzhavakhiya VG; Golikov AG
    J Appl Microbiol; 2018 Mar; 124(3):797-809. PubMed ID: 29297963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 52.