BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22672776)

  • 1. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes.
    Gu Z; Liu J; Cao K; Zhang J; Wang J
    BMC Syst Biol; 2012 Jun; 6():56. PubMed ID: 22672776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CePa: an R package for finding significant pathways weighted by multiple network centralities.
    Gu Z; Wang J
    Bioinformatics; 2013 Mar; 29(5):658-60. PubMed ID: 23314125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causal Disturbance Analysis: A Novel Graph Centrality Based Method for Pathway Enrichment Analysis.
    Yeganeh PN; Mostafavi MT
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1613-1624. PubMed ID: 30908237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway.
    Yang Q; Wang S; Dai E; Zhou S; Liu D; Liu H; Meng Q; Jiang B; Jiang W
    Brief Bioinform; 2019 Jan; 20(1):168-177. PubMed ID: 28968630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.
    Blatti C; Sinha S
    Bioinformatics; 2016 Jul; 32(14):2167-75. PubMed ID: 27153592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATria: a novel centrality algorithm applied to biological networks.
    Cickovski T; Peake E; Aguiar-Pulido V; Narasimhan G
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):239. PubMed ID: 28617231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PyPathway: Python Package for Biological Network Analysis and Visualization.
    Xu Y; Luo XC
    J Comput Biol; 2018 May; 25(5):499-504. PubMed ID: 29641230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphlet eigencentralities capture novel central roles of genes in pathways.
    Windels SFL; Malod-Dognin N; Pržulj N
    PLoS One; 2022; 17(1):e0261676. PubMed ID: 35077468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological centrality-based identification of hub genes and pathways associated with acute viral respiratory infection in infants.
    Liu XY; Li GQ; Ma Y; Zhao LJ
    Genet Mol Res; 2015 Dec; 14(4):18334-43. PubMed ID: 26782481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MATria: a unified centrality algorithm.
    Cickovski T; Aguiar-Pulido V; Narasimhan G
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):278. PubMed ID: 31167635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding Robust Adaptation Gene Regulatory Networks Using Multi-Objective Genetic Algorithm.
    Ren HP; Huang XN; Hao JX
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):571-7. PubMed ID: 27295641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-triangle centrality-based community detection in complex networks.
    Jia S; Gao L; Gao Y; Wang H
    IET Syst Biol; 2014 Jun; 8(3):116-25. PubMed ID: 25014378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKI: A bioinformatics method of quantifying the importance of nodes in gene regulatory network via a pseudo knockout index.
    Wang Y; Liu C; Qiao X; Han X; Liu ZP
    Biochim Biophys Acta Gene Regul Mech; 2023 Jun; 1866(2):194911. PubMed ID: 36804477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene alterations in monocytes are pathogenic factors for immunoglobulin a nephropathy by bioinformatics analysis of microarray data.
    Guo Y; Gao W; Wang D; Liu W; Liu Z
    BMC Nephrol; 2018 Jul; 19(1):184. PubMed ID: 30029622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GeneSurrounder: network-based identification of disease genes in expression data.
    Shah SD; Braun R
    BMC Bioinformatics; 2019 May; 20(1):229. PubMed ID: 31060502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple null model for inferences from network enrichment analysis.
    Jeuken GS; Käll L
    PLoS One; 2018; 13(11):e0206864. PubMed ID: 30412619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.
    Wang QL; Chen X; Zhang MH; Shen QH; Qin ZM
    Genet Mol Res; 2015 Dec; 14(4):16151-61. PubMed ID: 26662407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways.
    Han J; Li C; Yang H; Xu Y; Zhang C; Ma J; Shi X; Liu W; Shang D; Yao Q; Zhang Y; Su F; Feng L; Li X
    J R Soc Interface; 2015 Jan; 12(102):20140937. PubMed ID: 25551156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways.
    Garmhausen M; Hofmann F; Senderov V; Thomas M; Kandel BA; Habermann BH
    BMC Genomics; 2015 Oct; 16():790. PubMed ID: 26467653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactional and functional centrality in transcriptional co-expression networks.
    Prifti E; Zucker JD; Clément K; Henegar C
    Bioinformatics; 2010 Dec; 26(24):3083-9. PubMed ID: 20959383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.