These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 22672778)

  • 21. Fetal Growth and Intrauterine Epigenetic Programming of Obesity and Cardiometabolic Disease.
    Harary D; Akinyemi A; Charron MJ; Fuloria M
    Neoreviews; 2022 Jun; 23(6):e363-e372. PubMed ID: 35641462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenomics, gestational programming and risk of metabolic syndrome.
    Desai M; Jellyman JK; Ross MG
    Int J Obes (Lond); 2015 Apr; 39(4):633-41. PubMed ID: 25640766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenome-Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New Hampshire Birth Cohort Study (USA).
    Green BB; Karagas MR; Punshon T; Jackson BP; Robbins DJ; Houseman EA; Marsit CJ
    Environ Health Perspect; 2016 Aug; 124(8):1253-60. PubMed ID: 26771251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prenatal arsenic exposure interferes in postnatal immunocompetence despite an absence of ongoing arsenic exposure.
    Chakraborty M; Bhaumik M
    J Immunotoxicol; 2020 Dec; 17(1):135-143. PubMed ID: 32538211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental reprogramming of cancer susceptibility.
    Walker CL; Ho SM
    Nat Rev Cancer; 2012 Jun; 12(7):479-86. PubMed ID: 22695395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetes in pregnancy and epigenetic mechanisms-how the first 9 months from conception might affect the child's epigenome and later risk of disease.
    Hjort L; Novakovic B; Grunnet LG; Maple-Brown L; Damm P; Desoye G; Saffery R
    Lancet Diabetes Endocrinol; 2019 Oct; 7(10):796-806. PubMed ID: 31128973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutrition in early life and the programming of adult disease: a review.
    Langley-Evans SC
    J Hum Nutr Diet; 2015 Jan; 28 Suppl 1():1-14. PubMed ID: 24479490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of maternal diet on the epigenome: implications for human metabolic disease.
    Lillycrop KA
    Proc Nutr Soc; 2011 Feb; 70(1):64-72. PubMed ID: 21266093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic programming, epigenetics, and gestational diabetes mellitus.
    Pinney SE; Simmons RA
    Curr Diab Rep; 2012 Feb; 12(1):67-74. PubMed ID: 22127642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The end of the beginning: epigenetic variation in utero as a mediator of later human health and disease.
    Mansell T; Saffery R
    Epigenomics; 2017 Mar; 9(3):217-221. PubMed ID: 28234019
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome.
    Bommarito PA; Martin E; Fry RC
    Epigenomics; 2017 Mar; 9(3):333-350. PubMed ID: 28234024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases.
    Low FM; Gluckman PD; Hanson MA
    Epigenomics; 2011 Jun; 3(3):279-94. PubMed ID: 22122338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure to arsenic in utero is associated with various types of DNA damage and micronuclei in newborns: a birth cohort study.
    Navasumrit P; Chaisatra K; Promvijit J; Parnlob V; Waraprasit S; Chompoobut C; Binh TT; Hai DN; Bao ND; Hai NK; Kim KW; Samson LD; Graziano JH; Mahidol C; Ruchirawat M
    Environ Health; 2019 Jun; 18(1):51. PubMed ID: 31174534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetics and the burden of noncommunicable disease: a paucity of research in Africa.
    Hobbs A; Ramsay M
    Epigenomics; 2015; 7(4):627-39. PubMed ID: 26111033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutritional Programming Effects on Development of Metabolic Disorders in Later Life.
    Ong TP; Guest PC
    Methods Mol Biol; 2018; 1735():3-17. PubMed ID: 29380304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Epigenetics and Nutrition: maternal nutrition impacts on placental development and health of offspring].
    Panchenko PE; Lemaire M; Fneich S; Voisin S; Jouin M; Junien C; Gabory A
    Biol Aujourdhui; 2015; 209(2):175-87. PubMed ID: 26514387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fetal growth and developmental programming.
    Galjaard S; Devlieger R; Van Assche FA
    J Perinat Med; 2013 Jan; 41(1):101-5. PubMed ID: 23314514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Arsenite Exposure during Fetal Development on Energy Metabolism and Susceptibility to Diet-Induced Fatty Liver Disease in Male Mice.
    Ditzel EJ; Nguyen T; Parker P; Camenisch TD
    Environ Health Perspect; 2016 Feb; 124(2):201-9. PubMed ID: 26151952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prenatal substance exposure and offspring development: Does DNA methylation play a role?
    Knopik VS; Marceau K; Bidwell LC; Rolan E
    Neurotoxicol Teratol; 2019; 71():50-63. PubMed ID: 29408446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adverse effects of nutritional programming during prenatal and early postnatal life, some aspects of regulation and potential prevention and treatments.
    Guilloteau P; Zabielski R; Hammon HM; Metges CC
    J Physiol Pharmacol; 2009 Oct; 60 Suppl 3():17-35. PubMed ID: 19996479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.