These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22673338)

  • 1. Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water.
    Chae SR; Xiao Y; Lin S; Noeiaghaei T; Kim JO; Wiesner MR
    Water Res; 2012 Sep; 46(13):4053-62. PubMed ID: 22673338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in water.
    Chen CY; Jafvert CT
    Environ Sci Technol; 2010 Sep; 44(17):6674-9. PubMed ID: 20687543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental implications and applications of carbon nanomaterials in water treatment.
    Chae SR; Hotze EM; Badireddy AR; Lin S; Kim JO; Wiesner MR
    Water Sci Technol; 2013; 67(11):2582-6. PubMed ID: 23752392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties.
    Lin D; Li T; Yang K; Wu F
    J Hazard Mater; 2012 Nov; 241-242():404-10. PubMed ID: 23069335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid screening technique for estimating nanoparticle transport in porous media.
    Bouchard D; Zhang W; Chang X
    Water Res; 2013 Aug; 47(12):4086-94. PubMed ID: 23141766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-independent reactive oxygen species (ROS) formation through electron transfer from carboxylated single-walled carbon nanotubes in water.
    Hsieh HS; Wu R; Jafvert CT
    Environ Sci Technol; 2014 Oct; 48(19):11330-6. PubMed ID: 25171301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions.
    Schwyzer I; Kaegi R; Sigg L; Magrez A; Nowack B
    Environ Pollut; 2011 Jun; 159(6):1641-8. PubMed ID: 21435759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent electron-transport properties of carbon nanotubes.
    Back JH; Shim M
    J Phys Chem B; 2006 Nov; 110(47):23736-41. PubMed ID: 17125334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyconanosomes: disk-shaped nanomaterials for the water solubilization and delivery of hydrophobic molecules.
    Assali M; Cid JJ; Pernía-Leal M; Muñoz-Bravo M; Fernández I; Wellinger RE; Khiar N
    ACS Nano; 2013 Mar; 7(3):2145-53. PubMed ID: 23421374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreactivity of hydroxylated multi-walled carbon nanotubes and its effects on the photodegradation of atenolol in water.
    Zhang Y; Zhou L; Zeng C; Wang Q; Wang Z; Gao S; Ji Y; Yang X
    Chemosphere; 2013 Nov; 93(9):1747-54. PubMed ID: 23816450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorbability and photocatalytic degradability of humic substances in water on Ti-modified silica.
    Moriguchi T; Tahara M; Yaguchi K
    J Colloid Interface Sci; 2006 May; 297(2):678-86. PubMed ID: 16330037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.
    Ohba T
    Chemphyschem; 2014 Feb; 15(3):415-9. PubMed ID: 24448984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution.
    Wang P; Shi Q; Liang H; Steuerman DW; Stucky GD; Keller AA
    Small; 2008 Dec; 4(12):2166-70. PubMed ID: 19058159
    [No Abstract]   [Full Text] [Related]  

  • 14. Carbon nanotubes encapsulated in wormlike hollow silica shells.
    Grzelczak M; Correa-Duarte MA; Liz-Marzán LM
    Small; 2006 Oct; 2(10):1174-7. PubMed ID: 17193585
    [No Abstract]   [Full Text] [Related]  

  • 15. Aqueous carbon-nanotube-amphiphilic-block-copolymer nanoensembles: towards realization of charge-transfer processes with semiconductor quantum dots.
    Mountrichas G; Pispas S; Tagmatarchis N
    Small; 2007 Mar; 3(3):404-7. PubMed ID: 17245781
    [No Abstract]   [Full Text] [Related]  

  • 16. Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    ACS Nano; 2008 Jun; 2(6):1189-96. PubMed ID: 19206336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-resolution imaging of the nucleation points of single-walled carbon nanotubes.
    Zhu H; Suenaga K; Hashimoto A; Urita K; Hata K; Iijima S
    Small; 2005 Dec; 1(12):1180-3. PubMed ID: 17193414
    [No Abstract]   [Full Text] [Related]  

  • 18. Multiwalled carbon nanotubes with molybdenum dioxide nanoplugs--new chemical nanoarchitectures by electrochemical modification.
    Jurkschat K; Wilkins SJ; Salter CJ; Leventis HC; Wildgoose GG; Jiang L; Jones TG; Crossley A; Compton RG
    Small; 2006 Jan; 2(1):95-8. PubMed ID: 17193562
    [No Abstract]   [Full Text] [Related]  

  • 19. Hybrid microstructures from aligned carbon nanotubes and silica particles.
    Agrawal S; Kumar A; Frederick MJ; Ramanath G
    Small; 2005 Aug; 1(8-9):823-6. PubMed ID: 17193532
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes.
    Thomas KV; Farkas J; Farmen E; Christian P; Langford K; Wu Q; Tollefsen KE
    J Toxicol Environ Health A; 2011; 74(7-9):466-77. PubMed ID: 21391092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.