BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22673343)

  • 1. Biodegradation of triclosan by a wastewater microorganism.
    Lee DG; Zhao F; Rezenom YH; Russell DH; Chu KH
    Water Res; 2012 Sep; 46(13):4226-34. PubMed ID: 22673343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 17beta-estradiol-utilizing bacterium, Sphingomonas strain KC8: part I - characterization and abundance in wastewater treatment plants.
    Roh H; Chu KH
    Environ Sci Technol; 2010 Jul; 44(13):4943-50. PubMed ID: 20527759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the Helicobacter pylori enoyl-acyl carrier protein reductase in complex with hydroxydiphenyl ether compounds, triclosan and diclosan.
    Lee HH; Moon J; Suh SW
    Proteins; 2007 Nov; 69(3):691-4. PubMed ID: 17879346
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria.
    Lee DG; Chu KH
    Chemosphere; 2013 Nov; 93(9):1904-11. PubMed ID: 23890965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of hydroxylated metabolites in 2,2',4,4'-tetrabromodiphenyl ether exposed rats.
    Marsh G; Athanasiadou M; Athanassiadis I; Sandholm A
    Chemosphere; 2006 Apr; 63(4):690-7. PubMed ID: 16213553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol.
    Toyama T; Sei K; Yu N; Kumada H; Inoue D; Hoang H; Soda S; Chang YC; Kikuchi S; Fujita M; Ike M
    Water Res; 2009 Aug; 43(15):3765-76. PubMed ID: 19541342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triclosan susceptibility and co-metabolism--a comparison for three aerobic pollutant-degrading bacteria.
    Kim YM; Murugesan K; Schmidt S; Bokare V; Jeon JR; Kim EJ; Chang YS
    Bioresour Technol; 2011 Feb; 102(3):2206-12. PubMed ID: 21041079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.
    Gangadharan Puthiya Veetil P; Vijaya Nadaraja A; Bhasi A; Khan S; Bhaskaran K
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1603-12. PubMed ID: 22328252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration.
    Hupert-Kocurek K; Guzik U; Wojcieszyńska D
    Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation.
    Suarez S; Dodd MC; Omil F; von Gunten U
    Water Res; 2007 Jun; 41(12):2481-90. PubMed ID: 17467034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine.
    Canosa P; Morales S; Rodríguez I; Rubí E; Cela R; Gómez M
    Anal Bioanal Chem; 2005 Dec; 383(7-8):1119-26. PubMed ID: 16261326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water.
    Zhang YN; Xie Q; Sun G; Yang K; Song S; Chen J; Zhou C; Li Y
    Environ Sci Process Impacts; 2016 Sep; 18(9):1177-84. PubMed ID: 27383795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria.
    Roh H; Subramanya N; Zhao F; Yu CP; Sandt J; Chu KH
    Chemosphere; 2009 Nov; 77(8):1084-9. PubMed ID: 19772981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.
    Chen J; Qu R; Pan X; Wang Z
    Water Res; 2016 Oct; 103():215-223. PubMed ID: 27459151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of phenol via meta cleavage pathway triggers de novo TAG biosynthesis pathway in oleaginous yeast.
    Patel A; Sartaj K; Arora N; Pruthi V; Pruthi PA
    J Hazard Mater; 2017 Oct; 340():47-56. PubMed ID: 28711832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media.
    Ertit Taştan B; Dönmez G
    Pestic Biochem Physiol; 2015 Feb; 118():33-7. PubMed ID: 25752427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4.
    Tian H; Ma YJ; Li WY; Wang JW
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8963-8975. PubMed ID: 29332277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3.
    Schmidt S; Wittich RM; Erdmann D; Wilkes H; Francke W; Fortnagel P
    Appl Environ Microbiol; 1992 Sep; 58(9):2744-50. PubMed ID: 1444384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan.
    Wang L; Xu S; Pan B; Yang Y
    Environ Sci Process Impacts; 2017 Apr; 19(4):499-506. PubMed ID: 28290573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microaerobic degradation of 2-Mercaptobenzothiazole present in industrial wastewater.
    B U; Rajaram R
    J Hazard Mater; 2017 Jan; 321():773-781. PubMed ID: 27720473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.