These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22673448)

  • 1. Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles.
    García-Valenzuela A; Gutiérrez-Reyes E; Barrera RG
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):1161-79. PubMed ID: 22673448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical reflectivity of a disordered monolayer of highly scattering particles: coherent scattering model versus experiment.
    Vázquez-Estrada O; García-Valenzuela A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):745-54. PubMed ID: 24695136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients.
    Loiko VA; Miskevich AA
    Appl Opt; 2005 Jun; 44(18):3759-68. PubMed ID: 15989051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent reflectance in a system of random Mie scatterers and its relation to the effective-medium approach.
    Barrera RG; García-Valenzuela A
    J Opt Soc Am A Opt Image Sci Vis; 2003 Feb; 20(2):296-311. PubMed ID: 12570296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Features in coherent transmittance of a monolayer of particles.
    Loiko VA; Dick VP; Ivanov AP
    J Opt Soc Am A Opt Image Sci Vis; 2000 Nov; 17(11):2040-5. PubMed ID: 11059600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical inversions in remote sensing of particle size distributions. 3: Angular and spectral scattering in the Rayleigh-Gans-Born approximation for particles of various geometrical shapes.
    Fymat AL
    Appl Opt; 1979 Jan; 18(1):126-30. PubMed ID: 20208673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple scattering of electromagnetic waves by an aggregate of uniaxial anisotropic spheres.
    Li ZJ; Wu ZS; Shi Y; Bai L; Li HY
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jan; 29(1):22-31. PubMed ID: 22218348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scattering of a light beam from waves at an air-sea interface.
    Carter WH; Duncan DD
    Appl Opt; 1993 Jun; 32(18):3286-94. PubMed ID: 20829946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimate for the effect of forward scattering on the measurement of extinction for particles by cavity ringdown spectroscopy.
    Smith GS
    Appl Opt; 2011 Oct; 50(28):5422-9. PubMed ID: 22016208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of electric field standing waves on reflection microspectroscopy of polystyrene particles.
    Brooke H; Bronk BV; McCutcheon JN; Morgan SL; Myrick ML
    Appl Spectrosc; 2009 Nov; 63(11):1293-302. PubMed ID: 19891839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple expressions of the reflection and transmission coefficients of fundamental Lamb waves by a rectangular notch.
    Kim B; Roh Y
    Ultrasonics; 2011 Aug; 51(6):734-44. PubMed ID: 21440925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals.
    Mei J; Liu Z; Qiu C
    J Phys Condens Matter; 2005 Jun; 17(25):3735-57. PubMed ID: 21690693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray specular scattering from statistically rough surfaces: a novel theoretical approach based on the Green function formalism.
    Chukhovskii FN; Polyakov AM
    Acta Crystallogr A; 2010 Nov; 66(Pt 6):640-8. PubMed ID: 20962372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-scattering investigations of thermochromic gels.
    Beck A; Körner W; Hoffmann T; Fricke J
    Appl Opt; 1992 Jun; 31(18):3533-9. PubMed ID: 20725322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grazing-incidence small-angle X-ray scattering from a random rough surface: a self-consistent wavefunction approximation.
    Chukhovskii F
    Acta Crystallogr A; 2011 May; 67(Pt 3):200-9. PubMed ID: 21487178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmission, backscattering, and depolarization of waves in randomly distributed spherical particles.
    Cheung RL; Ishimaru A
    Appl Opt; 1982 Oct; 21(20):3792-8. PubMed ID: 20396316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic scattering by an aggregate of spheres.
    Xu YL
    Appl Opt; 1995 Jul; 34(21):4573-88. PubMed ID: 21052290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering from an isotropic layer between uniaxial crystals.
    Thomson ES; Wilen LA; Wettlaufer JS
    J Phys Condens Matter; 2009 May; 21(19):195407. PubMed ID: 21825485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple scattering calculations for technology.
    Mudgett PS; Richards LW
    Appl Opt; 1971 Jul; 10(7):1485-502. PubMed ID: 20111152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectivity and transmissivity of a surface covered by a disordered monolayer of large and tenuous particles: theory versus experiment.
    Vázquez-Estrada O; García-Valenzuela A
    Appl Opt; 2017 Sep; 56(25):7158-7166. PubMed ID: 29047976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.