These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 22673540)
41. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling. Ahuactzin-Pérez M; Tlecuitl-Beristain S; García-Dávila J; González-Pérez M; Gutiérrez-Ruíz MC; Sánchez C Sci Total Environ; 2016 Oct; 566-567():1186-1193. PubMed ID: 27277206 [TBL] [Abstract][Full Text] [Related]
42. Effects of pollutants on laccase activities of Marasmius quercophilus, a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Farnet AM; Gil G; Ferre E Chemosphere; 2008 Jan; 70(5):895-900. PubMed ID: 17868772 [TBL] [Abstract][Full Text] [Related]
43. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Xu G; Li F; Wang Q Sci Total Environ; 2008 Apr; 393(2-3):333-40. PubMed ID: 18258283 [TBL] [Abstract][Full Text] [Related]
44. Role of soil organic matter on the retention and mobility of common plastic additives, Di(2-ethylhexyl) phthalate, bisphenol A and benzophenone, in soil. Ramanayaka S; Vithanage M; Zhang H; Semple KT Environ Res; 2023 Nov; 236(Pt 1):116725. PubMed ID: 37487922 [TBL] [Abstract][Full Text] [Related]
45. Transformation of phthalates in young landfill cells. Jonsson S; Ejlertsson J; Svensson BH Waste Manag; 2003; 23(7):641-51. PubMed ID: 12957159 [TBL] [Abstract][Full Text] [Related]
46. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Cabana H; Alexandre C; Agathos SN; Jones JP Bioresour Technol; 2009 Jul; 100(14):3447-58. PubMed ID: 19329308 [TBL] [Abstract][Full Text] [Related]
47. Isolation and Physicochemical Characterization of Laccase from Shrestha P; Joshi B; Joshi J; Malla R; Sreerama L Biomed Res Int; 2016; 2016():3238909. PubMed ID: 27822471 [TBL] [Abstract][Full Text] [Related]
48. Alkylphenol oxidation with a laccase from a white-rot fungus: effects of culture induction and of ABTS used as a mediator. Farnet AM; Chevremont AC; Gil G; Gastaldi S; Ferre E Chemosphere; 2011 Jan; 82(2):284-9. PubMed ID: 20980040 [TBL] [Abstract][Full Text] [Related]
49. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Li J; Chen JA; Zhao Q; Li X; Shu W Chemosphere; 2006 Nov; 65(9):1627-33. PubMed ID: 16762396 [TBL] [Abstract][Full Text] [Related]
50. Behavior of endocrine-disrupting chemicals in leachate from MSW landfill sites in Japan. Asakura H; Matsuto T; Tanaka N Waste Manag; 2004; 24(6):613-22. PubMed ID: 15219920 [TBL] [Abstract][Full Text] [Related]
51. Metabolism and biochemical pathway of n-butyl benzyl phthalate by Pseudomonas fluorescens B-1 isolated from a mangrove sediment. Xu XR; Li HB; Gu JD Ecotoxicol Environ Saf; 2007 Nov; 68(3):379-85. PubMed ID: 17296224 [TBL] [Abstract][Full Text] [Related]
52. Enhanced removal of dibutyl phthalate in a laccase-mediator system: Optimized process parameters, kinetics, and environmental impact. Bankole PO; Omoni VT; Tennison-Omovoh CA; Adebajo SO; Mulla SI J Environ Manage; 2023 Dec; 348():119227. PubMed ID: 37820431 [TBL] [Abstract][Full Text] [Related]
53. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition. Zhang C; Li M; Chen X; Li M Ecotoxicol Environ Saf; 2015 Aug; 118():126-132. PubMed ID: 25933259 [TBL] [Abstract][Full Text] [Related]
54. Determination of phthalate esters in soil samples by microwave assisted extraction and high performance liquid chromatography. Liang P; Zhang L; Peng L; Li Q; Zhao E Bull Environ Contam Toxicol; 2010 Aug; 85(2):147-51. PubMed ID: 20652225 [TBL] [Abstract][Full Text] [Related]
55. Co-Immobilization of Laccase and Mediator into Fe-Doped ZIF-8 Significantly Enhances the Degradation of Organic Pollutants. Li Z; Shi Q; Dong X; Sun Y Molecules; 2024 Jan; 29(2):. PubMed ID: 38257220 [TBL] [Abstract][Full Text] [Related]
56. Biodegradation of di-n-butyl phthalate in a soil microcosm. Liao CS J Environ Sci Health B; 2010 Jul; 45(5):366-71. PubMed ID: 20512726 [TBL] [Abstract][Full Text] [Related]
57. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Postemsky PD; Bidegain MA; González-Matute R; Figlas ND; Cubitto MA Bioresour Technol; 2017 May; 231():85-93. PubMed ID: 28199921 [TBL] [Abstract][Full Text] [Related]
58. Levels, distribution, and health risk of phthalate esters in urban soils of Beijing, China. Xia X; Yang L; Bu Q; Liu R J Environ Qual; 2011; 40(5):1643-51. PubMed ID: 21869526 [TBL] [Abstract][Full Text] [Related]
59. Degradation of di-butyl-phthalate by soil bacteria. Chao WL; Lin CM; Shiung II; Kuo YL Chemosphere; 2006 May; 63(8):1377-83. PubMed ID: 16289698 [TBL] [Abstract][Full Text] [Related]
60. Use of lignocellulosic wastes of pecan (Carya illinoinensis) in the cultivation of Ganoderma lucidum. Ozcariz-Fermoselle MV; Fraile-Fabero R; Girbés-Juan T; Arce-Cervantes O; Oria de Rueda-Salgueiro JA; Azul AM Rev Iberoam Micol; 2018; 35(2):103-109. PubMed ID: 29731312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]