BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 22673616)

  • 1. Regulation of the human Na+-dependent glucose cotransporter hSGLT2.
    Ghezzi C; Wright EM
    Am J Physiol Cell Physiol; 2012 Aug; 303(3):C348-54. PubMed ID: 22673616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2.
    Hummel CS; Lu C; Loo DD; Hirayama BA; Voss AA; Wright EM
    Am J Physiol Cell Physiol; 2011 Jan; 300(1):C14-21. PubMed ID: 20980548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes.
    Hirsch JR; Loo DD; Wright EM
    J Biol Chem; 1996 Jun; 271(25):14740-6. PubMed ID: 8663046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural selectivity of human SGLT inhibitors.
    Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM
    Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters.
    Pajor AM; Randolph KM; Kerner SA; Smith CD
    J Pharmacol Exp Ther; 2008 Mar; 324(3):985-91. PubMed ID: 18063724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney.
    You G; Lee WS; Barros EJ; Kanai Y; Huo TL; Khawaja S; Wells RG; Nigam SK; Hediger MA
    J Biol Chem; 1995 Dec; 270(49):29365-71. PubMed ID: 7493971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated glucose concentration in culture media decreases membrane trafficking of SGLT2 in LLC-PK
    Sunilkumar S; Ford SM
    Am J Physiol Cell Physiol; 2019 Jun; 316(6):C913-C924. PubMed ID: 30943059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the mouse retinal taurine transporter (TAUT) by protein kinases in Xenopus oocytes.
    Loo DD; Hirsch JR; Sarkar HK; Wright EM
    FEBS Lett; 1996 Sep; 392(3):250-4. PubMed ID: 8774855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart.
    Vrhovac I; Balen Eror D; Klessen D; Burger C; Breljak D; Kraus O; Radović N; Jadrijević S; Aleksic I; Walles T; Sauvant C; Sabolić I; Koepsell H
    Pflugers Arch; 2015 Sep; 467(9):1881-98. PubMed ID: 25304002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the human facilitative glucose transporter 12 (GLUT12) by electrophysiological methods.
    Pujol-Giménez J; Pérez A; Reyes AM; Loo DD; Lostao MP
    Am J Physiol Cell Physiol; 2015 Jun; 308(12):C1008-22. PubMed ID: 25855082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2.
    Coady MJ; El Tarazi A; Santer R; Bissonnette P; Sasseville LJ; Calado J; Lussier Y; Dumayne C; Bichet DG; Lapointe JY
    J Am Soc Nephrol; 2017 Jan; 28(1):85-93. PubMed ID: 27288013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na
    Coady MJ; Wallendorff B; Lapointe JY
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F467-F474. PubMed ID: 28592437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells.
    Lee YJ; Kim MO; Ryu JM; Han HJ
    Biochim Biophys Acta; 2012 Apr; 1823(4):971-82. PubMed ID: 22230192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
    Chichger H; Cleasby ME; Srai SK; Unwin RJ; Debnam ES; Marks J
    Exp Physiol; 2016 Jun; 101(6):731-42. PubMed ID: 27164183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter.
    Traebert M; Völkl H; Biber J; Murer H; Kaissling B
    Am J Physiol Renal Physiol; 2000 May; 278(5):F792-8. PubMed ID: 10807591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SGLT2 inhibitors act from the extracellular surface of the cell membrane.
    Ghezzi C; Hirayama BA; Gorraitz E; Loo DD; Liang Y; Wright EM
    Physiol Rep; 2014 Jun; 2(6):. PubMed ID: 24973332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Na
    Calado J; Santos AR; Aires I; Lebre F; Nolasco F; Rueff J; Ramalho J
    FEBS Lett; 2018 Oct; 592(19):3317-3326. PubMed ID: 30156268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swertisin, a novel SGLT2 inhibitor, with improved glucose homeostasis for effective diabetes therapy.
    Bhardwaj G; Vakani M; Srivastava A; Patel D; Pappachan A; Murumkar P; Shah H; Shah R; Gupta S
    Arch Biochem Biophys; 2021 Oct; 710():108995. PubMed ID: 34289381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice.
    Capuano P; Bacic D; Roos M; Gisler SM; Stange G; Biber J; Kaissling B; Weinman EJ; Shenolikar S; Wagner CA; Murer H
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C927-34. PubMed ID: 16987995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.