These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 22673813)

  • 1. A novel method for high preconcentration of ultra trace amounts of B₁, B₂, G₁ and G₂ aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up.
    Afzali D; Ghanbarian M; Mostafavi A; Shamspur T; Ghaseminezhad S
    J Chromatogr A; 2012 Jul; 1247():35-41. PubMed ID: 22673813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preconcentration of trace amounts of methadone in human urine, plasma, saliva and sweat samples using dispersive liquid-liquid microextraction followed by high performance liquid chromatography.
    Ranjbari E; Golbabanezhad-Azizi AA; Hadjmohammadi MR
    Talanta; 2012 May; 94():116-22. PubMed ID: 22608423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of dispersive liquid-liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products.
    Campone L; Piccinelli AL; Celano R; Rastrelli L
    J Chromatogr A; 2011 Oct; 1218(42):7648-54. PubMed ID: 21636088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of inverted dispersive liquid-liquid microextraction followed by HPLC-UV as a sensitive and efficient method for the extraction and determination of quercetin in honey and biological samples.
    Ranjbari E; Biparva P; Hadjmohammadi MR
    Talanta; 2012 Jan; 89():117-23. PubMed ID: 22284468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils.
    Liu S; Xie Q; Chen J; Sun J; He H; Zhang X
    J Chromatogr A; 2013 Jun; 1295():16-23. PubMed ID: 23683892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for isolation and determination of polycyclic aromatic hydrocarbons in smoked fish.
    Ghasemzadeh-Mohammadi V; Mohammadi A; Hashemi M; Khaksar R; Haratian P
    J Chromatogr A; 2012 May; 1237():30-6. PubMed ID: 22483095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trace determination of dichlorvos in environmental samples by room temperature ionic liquid-based dispersive liquid-phase microextraction combined with HPLC.
    Wang S; Xiang B; Tang Q
    J Chromatogr Sci; 2012 Sep; 50(8):702-8. PubMed ID: 22618021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography.
    Boonchiangma S; Ngeontae W; Srijaranai S
    Talanta; 2012 Jan; 88():209-15. PubMed ID: 22265489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-density solvent-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography for determination of warfarin in human plasma.
    Ghambari H; Hadjmohammadi M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 899():66-71. PubMed ID: 22622064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of tetrahydropalmatine and tetrahydroberberine in rat urine using dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.
    Zhang M; Le J; Wen J; Chai Y; Fan G; Hong Z
    J Sep Sci; 2011 Nov; 34(22):3279-86. PubMed ID: 22028314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B
    Zhao J; Zhu Y; Jiao Y; Ning J; Yang Y
    J Sep Sci; 2016 Oct; 39(19):3789-3797. PubMed ID: 27500378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speciation analysis of mercury in sediments using vortex-assisted liquid-liquid microextraction coupled to high-performance liquid chromatography-cold vapor atomic fluorescence spectrometry.
    Leng G; Yin H; Li S; Chen Y; Dan D
    Talanta; 2012 Sep; 99():631-6. PubMed ID: 22967604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-density solvent-based dispersive liquid-liquid microextraction combined with single-drop microextraction for the fast determination of chlorophenols in environmental water samples by high performance liquid chromatography-ultraviolet detection.
    Li X; Xue A; Chen H; Li S
    J Chromatogr A; 2013 Mar; 1280():9-15. PubMed ID: 23375770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid analysis of aflatoxins B1, B2, and ochratoxin A in rice samples using dispersive liquid-liquid microextraction combined with HPLC.
    Lai XW; Sun DL; Ruan CQ; Zhang H; Liu CL
    J Sep Sci; 2014 Jan; 37(1-2):92-8. PubMed ID: 24243826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of ultraviolet filters in environmental water samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction.
    Zhang Y; Lee HK
    J Chromatogr A; 2013 Jan; 1271(1):56-61. PubMed ID: 23237715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples.
    Rezaee M; Yamini Y; Shariati S; Esrafili A; Shamsipur M
    J Chromatogr A; 2009 Feb; 1216(9):1511-4. PubMed ID: 19167003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of surfactant assisted dispersive liquid-liquid microextraction as an efficient sample treatment technique for preconcentration and trace detection of zonisamide and carbamazepine in urine and plasma samples.
    Behbahani M; Najafi F; Bagheri S; Bojdi MK; Salarian M; Bagheri A
    J Chromatogr A; 2013 Sep; 1308():25-31. PubMed ID: 23958696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection.
    Samadi S; Sereshti H; Assadi Y
    J Chromatogr A; 2012 Jan; 1219():61-5. PubMed ID: 22153286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-line cold column trapping of organic phase in dispersive liquid-liquid microextraction: enrichment and determination of curcumin in human serum.
    Safdarian M; Hashemi P; Naderlou M
    J Chromatogr A; 2012 Jun; 1244():14-9. PubMed ID: 22609163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.