These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 22674121)

  • 1. α-MnO2 nanotubes: high surface area and enhanced lithium battery properties.
    Li L; Nan C; Lu J; Peng Q; Li Y
    Chem Commun (Camb); 2012 Jul; 48(55):6945-7. PubMed ID: 22674121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries.
    Lai H; Li J; Chen Z; Huang Z
    ACS Appl Mater Interfaces; 2012 May; 4(5):2325-8. PubMed ID: 22545767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties.
    Luo W; Hu X; Sun Y; Huang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1997-2003. PubMed ID: 23432367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries.
    Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF
    Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Microspheres Formed from α-MnO2 Nanotubes as an Anode Material for Rechargeable Lithium-Ion Batteries.
    Jan SS; Nurgul S; Shi X; Xia H
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7181-5. PubMed ID: 26716307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries.
    Zhou L; Wu HB; Wang Z; Lou XW
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4853-7. PubMed ID: 22077330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high performance carrier for SnO2 nanoparticles used in lithium ion battery.
    Li J; Zhao Y; Wang N; Guan L
    Chem Commun (Camb); 2011 May; 47(18):5238-40. PubMed ID: 21445391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium chloride template synthesis of cubic tin dioxide hollow particles for lithium ion battery applications.
    Liu R; Yang S; Wang F; Lu X; Yang Z; Ding B
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1537-42. PubMed ID: 22276802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air batteries through tailored surface arrangement.
    Song K; Jung J; Heo YU; Lee YC; Cho K; Kang YM
    Phys Chem Chem Phys; 2013 Dec; 15(46):20075-9. PubMed ID: 24154608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers.
    Subramanian V; Zhu H; Wei B
    J Phys Chem B; 2006 Apr; 110(14):7178-83. PubMed ID: 16599483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance.
    Beuvier T; Richard-Plouet M; Mancini-Le Granvalet M; Brousse T; Crosnier O; Brohan L
    Inorg Chem; 2010 Sep; 49(18):8457-64. PubMed ID: 20722375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor.
    Ryu KS; Jeong SK; Joo J; Kim KM
    J Phys Chem B; 2007 Feb; 111(4):731-9. PubMed ID: 17249816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries.
    Xu GL; Xu YF; Sun H; Fu F; Zheng XM; Huang L; Li JT; Yang SH; Sun SG
    Chem Commun (Camb); 2012 Sep; 48(68):8502-4. PubMed ID: 22810155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.