BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22674684)

  • 1. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production.
    Xu G; Hua Q; Duan N; Liu L; Chen J
    Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae.
    Nosaka K; Onozuka M; Konno H; Kawasaki Y; Nishimura H; Sano M; Akaji K
    Mol Microbiol; 2005 Oct; 58(2):467-79. PubMed ID: 16194233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.
    Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S
    Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae.
    Yamanishi M; Matsuyama T
    ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae.
    Morita K; Matsuda F; Okamoto K; Ishii J; Kondo A; Shimizu H
    Microb Cell Fact; 2019 Oct; 18(1):177. PubMed ID: 31615527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae---a review].
    Xu G; Liu L; Chen J
    Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1571-7. PubMed ID: 22379797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae.
    Kong QX; Gu JG; Cao LM; Zhang AL; Chen X; Zhao XM
    Biotechnol Lett; 2006 Dec; 28(24):2033-8. PubMed ID: 17043906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK; Divol B; Prior BA; Bauer FF
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression.
    Brion C; Ambroset C; Delobel P; Sanchez I; Blondin B
    BMC Genomics; 2014 Dec; 15(1):1085. PubMed ID: 25494835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1021-7. PubMed ID: 22526809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae.
    Zhang A; Kong Q; Cao L; Chen X
    Lett Appl Microbiol; 2007 Feb; 44(2):212-7. PubMed ID: 17257263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production].
    Zhao L; Wang J; Zhou J; Liu L; Du G; Chen J
    Wei Sheng Wu Xue Bao; 2011 Jan; 51(1):50-8. PubMed ID: 21465789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.