BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22674732)

  • 1. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced raman scattering.
    Li X; Zhang Y; Shen ZX; Fan HJ
    Small; 2012 Aug; 8(16):2548-54. PubMed ID: 22674732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape control of Ag nanostructures for practical SERS substrates.
    Jeon TY; Park SG; Lee SY; Jeon HC; Yang SM
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):243-8. PubMed ID: 23281631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates.
    Sun M; Qian C; Wu W; Yu W; Wang Y; Mao H
    Nanotechnology; 2012 Sep; 23(38):385303. PubMed ID: 22948251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate.
    Li X; Hu H; Li D; Shen Z; Xiong Q; Li S; Fan HJ
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2180-5. PubMed ID: 22471731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering.
    Qian C; Ni C; Yu W; Wu W; Mao H; Wang Y; Xu J
    Small; 2011 Jul; 7(13):1800-6. PubMed ID: 21608122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designed fabrication of ordered porous au/ag nanostructured films for surface-enhanced Raman scattering substrates.
    Lu L; Eychmüller A; Kobayashi A; Hirano Y; Yoshida K; Kikkawa Y; Tawa K; Ozaki Y
    Langmuir; 2006 Mar; 22(6):2605-9. PubMed ID: 16519460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly effective SERS substrates based on an atomic-layer-deposition-tailored nanorod array scaffold.
    Liu M; Sun L; Cheng C; Hu H; Shen Z; Fan HJ
    Nanoscale; 2011 Sep; 3(9):3627-30. PubMed ID: 21842099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A
    ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C
    Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver coated platinum core-shell nanostructures on etched Si nanowires: atomic layer deposition (ALD) processing and application in SERS.
    Sivakov VA; Höflich K; Becker M; Berger A; Stelzner T; Elers KE; Pore V; Ritala M; Christiansen SH
    Chemphyschem; 2010 Jun; 11(9):1995-2000. PubMed ID: 20446286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering.
    Cao YQ; Qin K; Zhu L; Qian X; Zhang XJ; Wu D; Li AD
    Sci Rep; 2017 Jul; 7(1):5161. PubMed ID: 28701788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.
    Le Thi Ngoc L; Jin M; Wiedemair J; van den Berg A; Carlen ET
    ACS Nano; 2013 Jun; 7(6):5223-34. PubMed ID: 23647306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering.
    Zhang Y; Wang C; Wang J; Chen L; Li J; Liu Y; Zhao X; Wang Y; Yang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():461-7. PubMed ID: 26253437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-layer-deposited silver and dielectric nanostructures for plasmonic enhancement of Raman scattering from nanoscale ultrathin films.
    Ko CT; Yang PS; Han YY; Wang WC; Huang JJ; Lee YH; Tsai YJ; Shieh J; Chen MJ
    Nanotechnology; 2015 Jul; 26(26):265702. PubMed ID: 26057412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering.
    Liu GQ; Yu MD; Liu ZQ; Liu XS; Huang S; Pan PP; Wang Y; Liu ML; Gu G
    Nanotechnology; 2015 May; 26(18):185702. PubMed ID: 25872454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance.
    Wang J; Jin M; Gong Y; Li H; Wu S; Zhang Z; Zhou G; Shui L; Eijkel JCT; van den Berg A
    Lab Chip; 2017 May; 17(11):1970-1979. PubMed ID: 28470325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array.
    Deng S; Fan HM; Zhang X; Loh KP; Cheng CL; Sow CH; Foo YL
    Nanotechnology; 2009 Apr; 20(17):175705. PubMed ID: 19420600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.