BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 22674799)

  • 1. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analogs of Changsha near-infrared dyes with large Stokes Shifts for bioimaging.
    Yuan L; Lin W; Chen H
    Biomaterials; 2013 Dec; 34(37):9566-71. PubMed ID: 24054843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spirolactonized Si-rhodamine: a novel NIR fluorophore utilized as a platform to construct Si-rhodamine-based probes.
    Wang T; Zhao QJ; Hu HG; Yu SC; Liu X; Liu L; Wu QY
    Chem Commun (Camb); 2012 Sep; 48(70):8781-3. PubMed ID: 22836301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of NIR fluorescent dyes based on Si-rhodamine for in vivo imaging.
    Koide Y; Urano Y; Hanaoka K; Piao W; Kusakabe M; Saito N; Terai T; Okabe T; Nagano T
    J Am Chem Soc; 2012 Mar; 134(11):5029-31. PubMed ID: 22390359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes.
    Myochin T; Hanaoka K; Iwaki S; Ueno T; Komatsu T; Terai T; Nagano T; Urano Y
    J Am Chem Soc; 2015 Apr; 137(14):4759-65. PubMed ID: 25764154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    J Am Chem Soc; 2011 Apr; 133(15):5680-2. PubMed ID: 21443186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine.
    Koide Y; Kawaguchi M; Urano Y; Hanaoka K; Komatsu T; Abo M; Terai T; Nagano T
    Chem Commun (Camb); 2012 Mar; 48(25):3091-3. PubMed ID: 22344329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Si-rhodamine scaffolds: rational design of pH-durable protease-activated NIR probes in vivo.
    Li M; Wang C; Wang T; Fan M; Wang N; Ma D; Hu T; Cui X
    Chem Commun (Camb); 2020 Feb; 56(16):2455-2458. PubMed ID: 31996872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A General Strategy for the Construction of NIR-emitting Si-rhodamines and Their Application for Mitochondrial Temperature Visualization.
    Tang W; Gao H; Li J; Wang X; Zhou Z; Gai L; Feng XJ; Tian J; Lu H; Guo Z
    Chem Asian J; 2020 Sep; 15(17):2724-2730. PubMed ID: 32666700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging.
    Yuan L; Lin W; Zheng K; He L; Huang W
    Chem Soc Rev; 2013 Jan; 42(2):622-61. PubMed ID: 23093107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in Si-rhodamine-based fluorescent probes for live-cell imaging.
    Ohno H; Sasaki E; Yamada S; Hanaoka K
    Org Biomol Chem; 2024 Apr; 22(16):3099-3108. PubMed ID: 38444309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon-substituted xanthene dyes and their applications in bioimaging.
    Kushida Y; Nagano T; Hanaoka K
    Analyst; 2015 Feb; 140(3):685-95. PubMed ID: 25380094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red fluorescent scaffold for highly sensitive protease activity probes.
    Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon Substitution in Oxazine Dyes Yields Near-Infrared Azasiline Fluorophores That Absorb and Emit beyond 700 nm.
    Choi A; Miller SC
    Org Lett; 2018 Aug; 20(15):4482-4485. PubMed ID: 30014702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging.
    Wirth R; Gao P; Nienhaus GU; Sunbul M; Jäschke A
    J Am Chem Soc; 2019 May; 141(18):7562-7571. PubMed ID: 30986047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals.
    Yuan L; Lin W; Yang Y; Chen H
    J Am Chem Soc; 2012 Jan; 134(2):1200-11. PubMed ID: 22176300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom.
    Fu M; Xiao Y; Qian X; Zhao D; Xu Y
    Chem Commun (Camb); 2008 Apr; (15):1780-2. PubMed ID: 18379691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.