These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 22674851)
1. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation. Zhang X; Ke X; Zhu H Chemistry; 2012 Jun; 18(26):8048-56. PubMed ID: 22674851 [TBL] [Abstract][Full Text] [Related]
2. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. Wei Z; Sun J; Xie Z; Liang M; Chen S J Hazard Mater; 2010 May; 177(1-3):814-21. PubMed ID: 20089355 [TBL] [Abstract][Full Text] [Related]
3. Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: correlation between physical properties and photocatalytic activities. Tanaka A; Ogino A; Iwaki M; Hashimoto K; Ohnuma A; Amano F; Ohtani B; Kominami H Langmuir; 2012 Sep; 28(36):13105-11. PubMed ID: 22900610 [TBL] [Abstract][Full Text] [Related]
4. Cr(VI) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2. Dozzi MV; Saccomanni A; Selli E J Hazard Mater; 2012 Apr; 211-212():188-95. PubMed ID: 21959186 [TBL] [Abstract][Full Text] [Related]
5. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. Tsukamoto D; Shiraishi Y; Sugano Y; Ichikawa S; Tanaka S; Hirai T J Am Chem Soc; 2012 Apr; 134(14):6309-15. PubMed ID: 22440019 [TBL] [Abstract][Full Text] [Related]
6. Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(IV) dioxide. Naya S; Teranishi M; Isobe T; Tada H Chem Commun (Camb); 2010 Feb; 46(5):815-7. PubMed ID: 20087530 [TBL] [Abstract][Full Text] [Related]
7. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range. Tanaka A; Hashimoto K; Kominami H Chemistry; 2016 Mar; 22(13):4592-9. PubMed ID: 26880569 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. Zhao J; Zheng Z; Bottle S; Chou A; Sarina S; Zhu H Chem Commun (Camb); 2013 Apr; 49(26):2676-8. PubMed ID: 23435475 [TBL] [Abstract][Full Text] [Related]
9. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Kowalska E; Mahaney OO; Abe R; Ohtani B Phys Chem Chem Phys; 2010 Mar; 12(10):2344-55. PubMed ID: 20449347 [TBL] [Abstract][Full Text] [Related]
10. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Liu B; Wang X; Cai G; Wen L; Song Y; Zhao X J Hazard Mater; 2009 Sep; 169(1-3):1112-8. PubMed ID: 19500906 [TBL] [Abstract][Full Text] [Related]
11. Reductant-directed formation of PS-PAMAM-supported gold nanoparticles for use as highly active and recyclable catalysts for the aerobic oxidation of alcohols and the homocoupling of phenylboronic acids. Zheng J; Lin S; Zhu X; Jiang B; Yang Z; Pan Z Chem Commun (Camb); 2012 Jun; 48(50):6235-7. PubMed ID: 22595867 [TBL] [Abstract][Full Text] [Related]
12. Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells. Abdulla-Al-Mamun M; Kusumoto Y; Zannat T; Islam MS Phys Chem Chem Phys; 2011 Dec; 13(47):21026-34. PubMed ID: 22011673 [TBL] [Abstract][Full Text] [Related]
13. Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. Wei Y; Han S; Kim J; Soh S; Grzybowski BA J Am Chem Soc; 2010 Aug; 132(32):11018-20. PubMed ID: 20698662 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light. Hu S; Wang A; Li X; Wang Y; Löwe H Chem Asian J; 2010 May; 5(5):1171-7. PubMed ID: 20379993 [TBL] [Abstract][Full Text] [Related]
15. Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation. Tian G; Pan K; Fu H; Jing L; Zhou W J Hazard Mater; 2009 Jul; 166(2-3):939-44. PubMed ID: 19144462 [TBL] [Abstract][Full Text] [Related]
16. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Saha S; Pal A; Kundu S; Basu S; Pal T Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940 [TBL] [Abstract][Full Text] [Related]
17. Sonophotodeposition of bimetallic photocatalysts Pd-Au/TiO2 : application to selective oxidation of methanol to methyl formate. Colmenares JC; Lisowski P; Łomot D; Chernyayeva O; Lisovytskiy D ChemSusChem; 2015 May; 8(10):1676-85. PubMed ID: 25677211 [TBL] [Abstract][Full Text] [Related]
18. Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis. Lu Y; Yu H; Chen S; Quan X; Zhao H Environ Sci Technol; 2012 Feb; 46(3):1724-30. PubMed ID: 22224958 [TBL] [Abstract][Full Text] [Related]
19. Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property. Zhang G; Yang J; Zhang S; Xiong Q; Huang B; Wang J; Gong W J Hazard Mater; 2009 Dec; 172(2-3):986-92. PubMed ID: 19699585 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Shen L; Liang S; Wu W; Liang R; Wu L Dalton Trans; 2013 Oct; 42(37):13649-57. PubMed ID: 23903996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]