These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 22675433)
1. Transcriptome profiling of citrus fruit response to huanglongbing disease. Martinelli F; Uratsu SL; Albrecht U; Reagan RL; Phu ML; Britton M; Buffalo V; Fass J; Leicht E; Zhao W; Lin D; D'Souza R; Davis CE; Bowman KD; Dandekar AM PLoS One; 2012; 7(5):e38039. PubMed ID: 22675433 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to 'Candidatus Liberibacter asiaticus' infection. Zheng ZL; Zhao Y BMC Genomics; 2013 Jan; 14():27. PubMed ID: 23324561 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. Aritua V; Achor D; Gmitter FG; Albrigo G; Wang N PLoS One; 2013; 8(9):e73742. PubMed ID: 24058486 [TBL] [Abstract][Full Text] [Related]
4. Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'. Yao L; Yu Q; Huang M; Song Z; Grosser J; Chen S; Wang Y; Gmitter FG PLoS One; 2020; 15(2):e0228876. PubMed ID: 32059041 [TBL] [Abstract][Full Text] [Related]
5. Integrated Transcriptome and Metabolome Analysis Reveals Phenylpropanoid Biosynthesis and Phytohormone Signaling Contribute to " Cui X; Zhan X; Liu Y; Huang Z; Deng X; Zheng Z; Xu M Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555287 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional analysis of sweet orange trees co-infected with 'Candidatus Liberibacter asiaticus' and mild or severe strains of Citrus tristeza virus. Fu S; Shao J; Paul C; Zhou C; Hartung JS BMC Genomics; 2017 Oct; 18(1):837. PubMed ID: 29089035 [TBL] [Abstract][Full Text] [Related]
7. Candidatus Liberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype. Mafra V; Martins PK; Francisco CS; Ribeiro-Alves M; Freitas-Astúa J; Machado MA BMC Genomics; 2013 Apr; 14():247. PubMed ID: 23586643 [TBL] [Abstract][Full Text] [Related]
8. Insights into the Molecular Basis of Huanglongbing Tolerance in Persian Lime ( Estrella-Maldonado H; González-Cruz C; Matilde-Hernández C; Adame-García J; Santamaría JM; Santillán-Mendoza R; Flores-de la Rosa FR Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108662 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive meta-analysis, co-expression, and miRNA nested network analysis identifies gene candidates in citrus against Huanglongbing disease. Rawat N; Kiran SP; Du D; Gmitter FG; Deng Z BMC Plant Biol; 2015 Jul; 15():184. PubMed ID: 26215595 [TBL] [Abstract][Full Text] [Related]
10. Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to 'Candidatus Liberibacter asiaticus' infection. Hu Y; Zhong X; Liu X; Lou B; Zhou C; Wang X PLoS One; 2017; 12(12):e0189229. PubMed ID: 29232716 [TBL] [Abstract][Full Text] [Related]
11. Integrative analysis of metabolome and transcriptome profiles provides insight into the fruit pericarp pigmentation disorder caused by 'Candidatus Liberibacter asiaticus' infection. Wang F; Wu Y; Wu W; Huang Y; Zhu C; Zhang R; Chen J; Zeng J BMC Plant Biol; 2021 Aug; 21(1):397. PubMed ID: 34433413 [TBL] [Abstract][Full Text] [Related]
12. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit. Liao HL; Burns JK J Exp Bot; 2012 May; 63(8):3307-19. PubMed ID: 22407645 [TBL] [Abstract][Full Text] [Related]
13. Comparative Transcriptome and iTRAQ Proteome Analyses of Citrus Root Responses to Candidatus Liberibacter asiaticus Infection. Zhong Y; Cheng CZ; Jiang NH; Jiang B; Zhang YY; Wu B; Hu ML; Zeng JW; Yan HX; Yi GJ; Zhong GY PLoS One; 2015; 10(6):e0126973. PubMed ID: 26046530 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analyses reveal the potential mechanisms for color changes of a sweet orange peel induced by Candidatus Liberibacter asiaticus. Yuning L; Xianmei Y; Jingjing Z; Jinghua D; Luyang L; Jintian L; Benshui S Gene; 2022 Sep; 839():146736. PubMed ID: 35835404 [TBL] [Abstract][Full Text] [Related]
16. Metabolomic analysis elucidates how shade conditions ameliorate the deleterious effects of greening (Huanglongbing) disease in citrus. Suh JH; Guha A; Wang Z; Li SY; Killiny N; Vincent C; Wang Y Plant J; 2021 Dec; 108(6):1798-1814. PubMed ID: 34687249 [TBL] [Abstract][Full Text] [Related]
17. Response of sweet orange (Citrus sinensis) to 'Candidatus Liberibacter asiaticus' infection: microscopy and microarray analyses. Kim JS; Sagaram US; Burns JK; Li JL; Wang N Phytopathology; 2009 Jan; 99(1):50-7. PubMed ID: 19055434 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of the salicylic acid binding protein 2 (SABP2) from tobacco enhances tolerance against Huanglongbing in transgenic citrus. Soares JM; Weber KC; Qiu W; Mahmoud LM; Grosser JW; Dutt M Plant Cell Rep; 2022 Dec; 41(12):2305-2320. PubMed ID: 36107199 [TBL] [Abstract][Full Text] [Related]
19. 'Candidatus Liberibacter asiaticus' Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. Li J; Pang Z; Trivedi P; Zhou X; Ying X; Jia H; Wang N Mol Plant Microbe Interact; 2017 Aug; 30(8):620-630. PubMed ID: 28488467 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification and comparative expression profiling of the WRKY transcription factor family in two Citrus species with different Candidatus Liberibacter asiaticus susceptibility. Dai WS; Peng T; Wang M; Liu JH BMC Plant Biol; 2023 Mar; 23(1):159. PubMed ID: 36959536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]