These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22675475)

  • 1. Disulfide bridges remain intact while native insulin converts into amyloid fibrils.
    Kurouski D; Washington J; Ozbil M; Prabhakar R; Shekhtman A; Lednev IK
    PLoS One; 2012; 7(6):e36989. PubMed ID: 22675475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling of the misfolded insulin subunit and amyloid fibril.
    Choi JH; May BC; Wille H; Cohen FE
    Biophys J; 2009 Dec; 97(12):3187-95. PubMed ID: 20006956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models.
    Sereda V; Sawaya MR; Lednev IK
    J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils.
    Zako T; Sakono M; Hashimoto N; Ihara M; Maeda M
    Biophys J; 2009 Apr; 96(8):3331-40. PubMed ID: 19383476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural variations in the cross-beta core of amyloid beta fibrils revealed by deep UV resonance Raman spectroscopy.
    Popova LA; Kodali R; Wetzel R; Lednev IK
    J Am Chem Soc; 2010 May; 132(18):6324-8. PubMed ID: 20405832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features.
    Matthes D; Daebel V; Meyenberg K; Riedel D; Heim G; Diederichsen U; Lange A; de Groot BL
    J Mol Biol; 2014 Jan; 426(2):362-76. PubMed ID: 24513105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid self-association of highly amyloidogenic H-fragments of insulin: Experiment and molecular dynamics simulations.
    Dec R; Koliński M; Kouza M; Dzwolak W
    Int J Biol Macromol; 2020 May; 150():894-903. PubMed ID: 32070740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid fibril dynamics revealed by combined hydrogen/deuterium exchange and nuclear magnetic resonance.
    Olofsson A; Sauer-Eriksson AE; Ohman A
    Anal Biochem; 2009 Feb; 385(2):374-6. PubMed ID: 19027706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolating toxic insulin amyloid reactive species that lack β-sheets and have wide pH stability.
    Heldt CL; Kurouski D; Sorci M; Grafeld E; Lednev IK; Belfort G
    Biophys J; 2011 Jun; 100(11):2792-800. PubMed ID: 21641325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen/Deuterium Exchange and Molecular Dynamics Analysis of Amyloid Fibrils Formed by a D69K Charge-Pair Mutant of Human Apolipoprotein C-II.
    Mao Y; Zlatic CO; Griffin MD; Howlett GJ; Todorova N; Yarovsky I; Gooley PR
    Biochemistry; 2015 Aug; 54(31):4805-14. PubMed ID: 26196342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural studies of amyloids by quenched hydrogen-deuterium exchange by NMR.
    Vilar M; Wang L; Riek R
    Methods Mol Biol; 2012; 849():185-98. PubMed ID: 22528091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and composition of insulin fibril surfaces probed by TERS.
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    J Am Chem Soc; 2012 Aug; 134(32):13323-9. PubMed ID: 22813355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation.
    Jaikaran ET; Nilsson MR; Clark A
    Biochem J; 2004 Feb; 377(Pt 3):709-16. PubMed ID: 14565847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils.
    Chatani E; Imamura H; Yamamoto N; Kato M
    J Biol Chem; 2014 Apr; 289(15):10399-10410. PubMed ID: 24569992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermodynamics of amylin dimer studied by Hamiltonian-temperature replica exchange molecular dynamics simulations.
    Laghaei R; Mousseau N; Wei G
    J Phys Chem B; 2011 Mar; 115(12):3146-54. PubMed ID: 21384830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS).
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    Biophys J; 2014 Jan; 106(1):263-71. PubMed ID: 24411258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cyclic peptide inhibitor of apoC-II peptide fibril formation: mechanistic insight from NMR and molecular dynamics analysis.
    Griffin MD; Yeung L; Hung A; Todorova N; Mok YF; Karas JA; Gooley PR; Yarovsky I; Howlett GJ
    J Mol Biol; 2012 Mar; 416(5):642-55. PubMed ID: 22244853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.