These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 22676046)
1. Transcriptome analysis of the citrus red mite, Panonychus citri, and its gene expression by exposure to insecticide/acaricide. Niu JZ; Dou W; Ding TB; Shen GM; Zhang K; Smagghe G; Wang JJ Insect Mol Biol; 2012 Aug; 21(4):422-36. PubMed ID: 22676046 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. Bajda S; Dermauw W; Greenhalgh R; Nauen R; Tirry L; Clark RM; Van Leeuwen T BMC Genomics; 2015 Nov; 16():974. PubMed ID: 26581334 [TBL] [Abstract][Full Text] [Related]
3. [Resistance realized heritability and risk assessment of Panonychus citri to avermectin and fenpropathrin]. He HG; Zhao ZM; Yan XH; Wang JJ Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):2147-52. PubMed ID: 22097380 [TBL] [Abstract][Full Text] [Related]
4. Involvement of Three Esterase Genes from Panonychus citri (McGregor) in Fenpropathrin Resistance. Shen XM; Liao CY; Lu XP; Wang Z; Wang JJ; Dou W Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548163 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterisation of a sodium channel gene and identification of a Phe1538 to Ile mutation in citrus red mite, Panonychus citri. Ding TB; Zhong R; Jiang XZ; Liao CY; Xia WK; Liu B; Dou W; Wang JJ Pest Manag Sci; 2015 Feb; 71(2):266-77. PubMed ID: 24753229 [TBL] [Abstract][Full Text] [Related]
6. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae). Ouyang Y; Montez GH; Liu L; Grafton-Cardwell EE Pest Manag Sci; 2012 May; 68(5):781-7. PubMed ID: 22102515 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of seven glutathione S-transferase genes from citrus red mite, Panonychus citri (McGregor). Liao CY; Zhang K; Niu JZ; Ding TB; Zhong R; Xia WK; Dou W; Wang JJ Int J Mol Sci; 2013 Dec; 14(12):24255-70. PubMed ID: 24351815 [TBL] [Abstract][Full Text] [Related]
8. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). Liu B; Jiang G; Zhang Y; Li J; Li X; Yue J; Chen F; Liu H; Li H; Zhu S; Wang J; Ran C PLoS One; 2011; 6(12):e28516. PubMed ID: 22162774 [TBL] [Abstract][Full Text] [Related]
9. Whole genome sequencing and bulked segregant analysis suggest a new mechanism of amitraz resistance in the citrus red mite, Panonychus citri (Acari: Tetranychidae). Yu SJ; Cong L; Pan Q; Ding LL; Lei S; Cheng LY; Fang YH; Wei ZT; Liu HQ; Ran C Pest Manag Sci; 2021 Nov; 77(11):5032-5048. PubMed ID: 34223705 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari: Tetranychidae). Zhang K; Niu JZ; Ding TB; Dou W; Wang JJ Arch Insect Biochem Physiol; 2013 Apr; 82(4):213-26. PubMed ID: 23404785 [TBL] [Abstract][Full Text] [Related]
11. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Van Leeuwen T; Tirry L; Yamamoto A; Nauen R; Dermauw W Pestic Biochem Physiol; 2015 Jun; 121():12-21. PubMed ID: 26047107 [TBL] [Abstract][Full Text] [Related]
12. Transcription profiling and characterization of Dermanyssus gallinae cytochrome P450 genes involved in beta-cypermethrin resistance. Wang C; Xu X; Huang Y; Yu H; Li H; Wan Q; Pan B Vet Parasitol; 2020 Jul; 283():109155. PubMed ID: 32534384 [TBL] [Abstract][Full Text] [Related]
13. Cross-resistance, inheritance and biochemical mechanism of abamectin resistance in a field-derived strain of the citrus red mite, Panonychus citri (Acari: Tetranychidae). Liu XY; Li K; Pan D; Dou W; Yuan GR; Wang JJ Pest Manag Sci; 2024 Mar; 80(3):1258-1265. PubMed ID: 37889506 [TBL] [Abstract][Full Text] [Related]
14. Genetic analysis and screening of detoxification-related genes in an amitraz-resistant strain of Yu SJ; Cong L; Liu HQ; Ran C Bull Entomol Res; 2020 Dec; 110(6):743-755. PubMed ID: 32419680 [TBL] [Abstract][Full Text] [Related]
15. An Ecoinformatics Approach to Field-Scale Evaluation of Insecticide Effects in California Citrus: Are Citrus Thrips and Citrus Red Mite Induced Pests? Livingston G; Hack L; Steinmann KP; Grafton-Cardwell EE; Rosenheim JA J Econ Entomol; 2018 May; 111(3):1290-1297. PubMed ID: 29590397 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the Resistance of the Citrus Red Mite (Acari: Tetranychidae) to Four Acaricides in Different Citrus Orchards in China. Pan D; Dou W; Yuan GR; Zhou QH; Wang JJ J Econ Entomol; 2020 Apr; 113(2):918-923. PubMed ID: 31819971 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval). Wei P; Shi L; Shen G; Xu Z; Liu J; Pan Y; He L Pestic Biochem Physiol; 2016 Jul; 131():87-95. PubMed ID: 27265830 [TBL] [Abstract][Full Text] [Related]
18. Identification of responsive proteins in Panonychus citri exposed to abamectin by a proteomic approach. Shen XM; Zhong R; Xia WK; Wei D; Ding TB; Liao CY; Niu JZ; Dou W; Wang JJ J Proteomics; 2017 Mar; 158():9-19. PubMed ID: 28219754 [TBL] [Abstract][Full Text] [Related]
19. CYP4CL2 Confers Metabolic Resistance to Pyridaben in the Citrus Pest Mite Pan D; Xia M; Li C; Liu X; Archdeacon L; O'Reilly AO; Yuan G; Wang J; Dou W J Agric Food Chem; 2023 Dec; 71(49):19465-19474. PubMed ID: 38048568 [TBL] [Abstract][Full Text] [Related]
20. Lethal and sublethal effects of fluralaner on the citrus red mite, Panonychus citri (McGregor). Ren Y; Dou W; Wang JJ; Yuan G Pest Manag Sci; 2024 Jul; 80(7):3308-3316. PubMed ID: 38375770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]