These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The use of an interspinous implant in conjunction with a graded facetectomy procedure. Fuchs PD; Lindsey DP; Hsu KY; Zucherman JF; Yerby SA Spine (Phila Pa 1976); 2005 Jun; 30(11):1266-72; discussion 1273-4. PubMed ID: 15928550 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB; Murovic JA; Cho BY; Lim TJ; Park J J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
5. Global and segmental kinematic changes following sequential resection of posterior osteoligamentous structures in the lumbar spine: An in vitro biomechanical investigation using pure moment testing protocols. Chamoli U; Korkusuz MH; Sabnis AB; Manolescu AR; Tsafnat N; Diwan AD Proc Inst Mech Eng H; 2015 Nov; 229(11):812-21. PubMed ID: 26503842 [TBL] [Abstract][Full Text] [Related]
6. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion]. Dong JW; Feng F; Zhao WD; Rong LM; Liu XM Zhonghua Wai Ke Za Zhi; 2011 May; 49(5):436-9. PubMed ID: 21733402 [TBL] [Abstract][Full Text] [Related]
7. Effect of facetectomy on lumbar spinal stability under sagittal plane loadings. Lee KK; Teo EC; Qiu TX; Yang K Spine (Phila Pa 1976); 2004 Aug; 29(15):1624-31. PubMed ID: 15284506 [TBL] [Abstract][Full Text] [Related]
8. A biomechanical comparison of 3 different posterior fixation techniques for 2-level lumbar spinal disorders. Liu F; Feng Z; Liu T; Fei Q; Jiang C; Li Y; Jiang X; Dong J J Neurosurg Spine; 2016 Mar; 24(3):375-80. PubMed ID: 26637067 [TBL] [Abstract][Full Text] [Related]
9. Effect of graded facetectomy on biomechanics of Dynesys dynamic stabilization system. Kiapour A; Ambati D; Hoy RW; Goel VK Spine (Phila Pa 1976); 2012 May; 37(10):E581-9. PubMed ID: 22198353 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Gillespie KA; Dickey JP Spine (Phila Pa 1976); 2004 Jun; 29(11):1208-16. PubMed ID: 15167660 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical evaluation of a new total posterior-element replacement system. Wilke HJ; Schmidt H; Werner K; Schmölz W; Drumm J Spine (Phila Pa 1976); 2006 Nov; 31(24):2790-6; discussion 2797. PubMed ID: 17108830 [TBL] [Abstract][Full Text] [Related]
12. Effects of facetectomy and crosslink augmentation on motion segment flexibility in posterior lumbar interbody fusion. Chutkan NB; Zhou H; Akins JP; Wenger KH Spine (Phila Pa 1976); 2008 Oct; 33(22):E828-35. PubMed ID: 18923306 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical effect of graded facetectomy on asymmetrical finite element model of the lumbar spin. Erbulut DU Turk Neurosurg; 2014; 24(6):923-8. PubMed ID: 25448210 [TBL] [Abstract][Full Text] [Related]
14. [The biomechanical change of lumbar unilateral graded facetectomy and strategies of its microsurgical reconstruction: report of 23 cases]. Zhou Y; Luo G; Chu TW; Wang J; Li CQ; Zheng WJ; Zhang ZF; Hao Y Zhonghua Yi Xue Za Zhi; 2007 May; 87(19):1334-8. PubMed ID: 17727779 [TBL] [Abstract][Full Text] [Related]
15. Effect of cage design, supplemental posterior instrumentation and approach on primary stability of a lumbar interbody fusion - A biomechanical in vitro study. Schmoelz W; Sandriesser S; Loebl O; Bauer M; Krappinger D Clin Biomech (Bristol); 2017 Oct; 48():30-34. PubMed ID: 28719806 [TBL] [Abstract][Full Text] [Related]
16. Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. Phillips FM; Voronov LI; Gaitanis IN; Carandang G; Havey RM; Patwardhan AG Spine J; 2006; 6(6):714-22. PubMed ID: 17088203 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical effect of graded minimal-invasive decompression procedures on lumbar spinal stability. Hartmann F; Janssen C; Böhm S; Hely H; Rommens PM; Gercek E Arch Orthop Trauma Surg; 2012 Sep; 132(9):1233-9. PubMed ID: 22592915 [TBL] [Abstract][Full Text] [Related]
18. The role of cage height on the flexibility and load sharing of lumbar spine after lumbar interbody fusion with unilateral and bilateral instrumentation: a biomechanical study. Du L; Sun XJ; Zhou TJ; Li YC; Chen C; Zhao CQ; Zhang K; Zhao J BMC Musculoskelet Disord; 2017 Nov; 18(1):474. PubMed ID: 29162074 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical evaluation of different surgical procedures in single-level transforaminal lumbar interbody fusion in vitro. Cao Y; Liu F; Wan S; Liang Y; Jiang C; Feng Z; Jiang X; Chen Z Clin Biomech (Bristol); 2017 Nov; 49():91-95. PubMed ID: 28898815 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical assessment of minimally invasive decompression for lumbar spinal canal stenosis: a cadaver study. Hamasaki T; Tanaka N; Kim J; Okada M; Ochi M; Hutton WC J Spinal Disord Tech; 2009 Oct; 22(7):486-91. PubMed ID: 20075811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]